首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
采用水热法,以聚乙二醇(400)为分散剂,以NaOH和HNO3溶液调节初始溶液pH值,合成GdF3∶Eu3+和NaGdF4∶Eu3+纳米晶。XRD和SEM结果表明:在酸性溶液(pH=3,5)、中性溶液(pH=7)和碱性溶液(pH=9)中,分别获得具有正交结构的GdF3∶Eu3+纳米晶,GdF3∶Eu3+和NaGdF4∶Eu3+混合晶,六方结构NaGdF4∶Eu3+棒状微米晶。根据Scherrer公式估算pH=3和pH=5时制备纳米晶的一次性粒径分别为49和28 nm。样品的发射光谱结果表明:特征发射峰来自于5D2、5D1、5D0到7FJ跃迁。在主晶相为GdF3样品中,主发射峰来自于Eu3+的5D0→7F1的磁偶极跃迁;晶相为NaGdF4样品的主发射峰来自于Eu3+的5D0→7F2电偶极跃迁。5D0→7F1和5D0→7F2跃迁发射相对强度比值显示:Eu3+在NaGdF4晶体中的格位对称性下降。激发光谱显示出Gd3+和Eu3+具有较好的能量传递。  相似文献   

2.
以尿素为燃烧剂,乙二醇为分散剂采用燃烧法制备了Gd3Ga5O12∶Eu3+纳米晶。利用X射线衍射、电镜和荧光光谱对前驱体和热处理后样品的结构、形貌和发光性能进行了表征。XRD结果表明:700℃热处理2 h即可获得立方结构Gd3Ga5O12∶Eu3+纳米晶。根据Scherrer公式估算经700℃和900℃热处理2 h获得的纳米晶的一次性粒径分别为28 nm和42 nm。发射光谱和激发光谱的结果表明:特征发射峰来自于5D0-7FJ跃迁,而来自于Eu3+的5D0→7F1的磁偶极跃迁发射最强;宽激发带主要来自于Eu-O电荷迁移带和Gd3Ga5O12基质吸收。发射强度和激发强度随热处理温度的提高而增强。  相似文献   

3.
以强碱性阴离子交换树脂为交换介质,采用离子交换法制备了稀土Tb3+离子掺杂的ZrO2:Tb3+纳米晶.通过XRD,TG-DSC,TEM,HRTEM等手段分析了样品制备过程的物相变化及晶粒形貌,用荧光光度计研究了样品的三维荧光光谱、激发光谱和发射光谱.结果表明:前驱沉淀物经800℃焙烧处理2 h,制备出近方型形貌,颗粒分散性好、尺寸约为40 nm的四方相ZrO2:Tb3+纳米晶.当焙烧温度升高到900℃以上时样品出现了少量单斜晶相,而经800℃焙烧处理的纯Zr02是以四方相和单斜相同时存在.说明稀土Tb3+离子的掺杂对ZrO2基质的四方晶相起到稳定作用.由ZrO2:Tb3+)的等角三维荧光光谱图显示Tb3+在ZrO2基质中的最佳激发波长为290 nm:在290 nm波长光的激发下观察到纳米ZrO2中Tb3+的发射峰位于491,545,582 nm分别对应于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F4能级跃迁,以491,545nm的发射峰最强,其中经800℃焙烧处理的样品其5D4→7F6跃迁发射与5D4→7F5跃迁发射强度几乎相同,说明该法制备的纳米ZrO2:Tb3+中5D4→7F6跃迁发射增强,使Tb3+发光的蓝色成分增加了.  相似文献   

4.
CaMoO4∶Eu3+发光材料的制备和发光性质的研究   总被引:2,自引:0,他引:2  
用共沉淀法与高温焙烧法制备了样品CaMoO4:Eu3+.TG-DTA谱图表明:800℃时,样品吸收的能量最大,即形成稳定的CaMoO4:Eu3+结构.用XRD谱图进一步分析表明:800℃时,样品CaMoO4:Eu3+已形成CaMoO4的白钨矿结构.由于2个Eu3+取代3个Ca2+,导致了晶体产生微小的晶体缺陷,从而形成具有p-n结的半导体.经过激发和发射谱图的测试发现:这种缺陷结构不但可以使Eu3+禁戒的4f电子发生跃迁,而且可以使MoO42-的能量高效地传递给Eu3+.尤其使与MoO42-的发射特征峰(488 nm)部分重叠的Eu3+(465 nm)的7F0→5D2电子跃迁得到了极大的加强,进而在λex=465 nm的发射谱图中,自激活荧光体MoO42-的发射强度被大大减弱甚至猝灭,而Eu3+的5D0→7F2(612 nm)跃迁的红光发光强度被大大增强,使该材料成为有潜在应用价值的发光材料.  相似文献   

5.
李霞  许剑轶  王瑞芬  张胤 《应用化学》2011,28(12):1393-1396
通过高温固相法合成了LED用红色荧光粉Sr(1-1.5x)Mo0.8Si0.2O3.8∶Eu3+x(x=0.1,0.2,0.3,0.4,0.5)。 通过XRD、激发光谱和发射光谱测试了材料的物相组成以及发光性能。 x=0.1样品的XRD谱与JCPDS 08-0482(SrMoO4)的标准卡片相同。 Eu3+代替晶格中Sr2+的位置成为发光中心。 随着Eu3+含量x的增加,593 nm处的5D0-7F1跃迁和614 nm处的5D0-7F2跃迁发射强度会相互转换:当x≤0.4时,以磁偶极5D0-7F1跃迁为主,发射橙色光;而当x=0.5时,以电偶极5D0-7F2跃迁发射为主,发射红光。 可能是过量掺杂的Eu3+离子,只能存在于晶格空位形成缺陷,无法占据SrMoO4中Sr2+的格位中,Eu3+在晶格中占据非对称中心的格位,导致电偶极跃迁变成允许跃迁,从而增加了5D0-7F2跃迁,减弱了5D0-7F1跃迁。 因此,可以通过调节激活剂的含量获得不同发光色的荧光粉。 Eu3+掺杂的硅钼酸锶体系,614 nm激发下,在368 nm处出现宽的基质吸收峰和467 nm处7F0-5D2的跃迁峰,且这2处的吸收峰在x=0.5时比x=0.4时强3倍左右。 材料能非常好的吸收368 nm波长的光,产生颜色可调的橙红色。 与近紫外光LED芯片匹配良好。  相似文献   

6.
通过水热反应合成了六角形LaAlO3∶0.05Eu3+微晶样品,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、能量色散X射线(EDX)和荧光光谱(PL)对产物进行表征,讨论了反应温度和NaOH浓度对LaAlO3合成的影响.XRD分析表明,所合成的样品属三方晶系(空间群R3c),对LaAlO3∶0.05Eu3+样品的X射线粉末衍射数据进行Rietveld精修,最终R因子为Rp=6.79%,Rwp=8.96%;其晶胞参数为a=b=0.53636(2)nm,c=1.3101(1)nm.SEM分析表明,LaAlO3∶0.05Eu3+微晶具有六角形形貌,颗粒较均匀,平均尺寸约为4!m.PL分析表明,LaAlO3∶0.05Eu3+微晶的特征发射为Eu3+的5D0→7F1跃迁发射.  相似文献   

7.
以PEG-2000、柠檬酸和甘氨酸为表面活性剂,采用水热法制备出扁平纳米棒、纳米花和纳米片状的GdF3∶Eu3+发光材料,并对其结构和性能进行了表征.XRD结果表明,所得样品均为正交晶系.FESEM照片表明,使用不同表面活性剂所制备的产物形貌不同.研究了以PEG-2000为表面活性剂时反应物浓度对产物形貌的影响,并对其生长机理进行了探讨.荧光光谱表明,在不同波长激发光的照射下,GdF3∶Eu3+纳米晶的最强发射峰均位于591 nm处,对应于Eu3+的5D0→7F1磁偶极跃迁.GdF3∶Eu3+的Gd3+-Eu3+之间发生了有效的能量传递.不同形貌样品的发光强度不同.  相似文献   

8.
首次采用多元醇的方法合成了GdPO4:Eu3+和GdPO4:Ce3+,Tb3+纳米晶,并利用X-射线衍射(XRD),傅立叶变换红外光谱(FTIR),透射电镜(TEM),光致发光光谱(PL)及热重和差示扫描量热分析(TG-DSC)对产物进行了表征.结果表明,产物为单斜晶系独居石结构正磷酸盐;形貌为梭形,长轴600~700 nm,短轴50~200 nm;纳米晶在水中有良好的分散性.GdPO4:Eu3+水溶液在251 nm激发下.发射光谱以Eu3+的5D0-7F1 (592 nm)磁偶极跃迁强度最大;GdPO4:Ce3+,Tb3+纳米晶水溶液的激发光谱在240~300nm处有一宽的吸收带,峰值位于262 nm,为Ce3+离子的4f-5d跃迁吸收,发射光谱呈现Tb3+特征绿色发射,最强峰位于544 nm.讨论了GdPO4:Ce3+,Tb3+体系中敏化发光机理,通过光谱分析证实了存在Ce3+→Gd3+→Tb3+的能量传递过程.  相似文献   

9.
采用乙二醇法制备了单质Ag纳米粒子,并通过直接沉淀法合成了均匀球形的Ag@YF3∶Eu3+核壳结构复合纳米发光粒子,对产物的结构和性能进行了表征。XRD分析表明:Ag表面包覆上了结晶良好的正交晶系的YF3∶Eu3+。TEM照片表明:所得的纳米复合粒子具有明显的核壳结构和均匀的球形,中间Ag粒子的尺寸在80~100 nm之间,Ag@YF3∶Eu3+的粒径尺寸约为150~180 nm,表面粗糙且包覆完全。电子衍射表明复合样品为多晶。荧光光谱表明:该纳米复合粒子具有良好的发光性,以593 nm附近的5D0→7F1磁偶极跃迁为最强发射峰,但是比纯的YF3∶Eu3+的发光强度要弱,其荧光寿命有所增强,这表明Ag纳米粒子对外层的YF3∶Eu3+的发光有猝灭作用。  相似文献   

10.
采用高温固相反应法在弱还原气氛下制备了Ca2Y7.9(SiO4)6O2-0.5xFx:Eu(2+,3+)0.1(x=0~4)系列荧光粉。晶胞参数a,c和晶胞体积V均随着F-置换量的增加呈线性减小,晶胞参数a和c的变化率相近。荧光体中Eu2+和Eu3+共存,Eu2+3d5/2与Eu3+3d5/2电子结合能分别为1128.4和1136.3 eV,Eu2+的3d5/2与3d3/2的电子结合能差为28.4 eV。Eu2+和Eu3+的3d5/2态XPS峰面积比为6.9∶1。激发光谱由Eu3+的两个电荷迁移(CTS)带和f-f跃迁激发线组成,x=0,1的试样中出现了Eu2+的f-d跃迁强激发谱带。激发到Eu3+的电荷迁移态或激发Eu2+,除了来自Eu3+的5D0能级的发射之外,还观察到了5D1能级的强发射和5D2能级的弱发射,并且激发Eu2+时5D1→7F4发射强度超过5D0→7F2,没有出现Eu2+的明显发射,Eu2+对Eu3+发光起到很好的敏化作用。5DJ(J>0)高能级发射来自4f格位的Eu3+发光中心,Eu2+的敏化起关键作用。Eu3+在4f和6h两种格位的分布比为4∶6。  相似文献   

11.
以PEG-2000、柠檬酸和甘氨酸为表面活性剂,采用水热法制备出扁平纳米棒、纳米花和纳米片状的GdF3:Eu3+发光材料,并对其结构和性能进行了表征.XRD结果表明,所得样品均为正交晶系.FESEM照片表明,使用不同表面活性剂所制备的产物形貌不同.研究了以PEG-2000为表面活性剂时反应物浓度对产物形貌的影响,并对其...  相似文献   

12.
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900°C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence 5D0→7FJ (J=0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to 5D0→7F2 of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to 5D0→7F1 of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration>4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO3(2-) group. The optical energy band gap is widened with increase of Eu3+ ion dopant.  相似文献   

13.
采用水热法在多孔阳极氧化铝(AAO)模板上制备了NaGdF<,4>:Eu<'3+>(摩尔分数5.0%)/AAO薄膜,并研究了制备方法、溶液浓度和退火温度对薄膜样品形貌、结构和发光性质的影响.XRD结果表明,在低于500 ℃退火,得到具有NaGdF<,4>六方相结构的NaGdF<,4>:Eu<'3+>/AAO薄膜;而在5...  相似文献   

14.
空气中合成M2B4O7:Eu3+(M=Na,K)荧光体及其性质表征   总被引:7,自引:0,他引:7  
以M2B4O7(M=Na,K)为基质,在空气中掺杂稀土元素Eu3+得到了Na2B4O7:Eu3+和K2B4O7:Eu3+荧光体.探讨了体系的烧结条件和荧光性质,分析了晶体的结构.结果表明,虽然两种体系的最佳合成条件不同,但是体系中都同时存在[BO4]和[BO3]结构;稀土离子Eu3+的发光以电偶极跃迁5D0-7F2为主,处于非中心对称的格位上,并且可以很好地存在于基质中,Na2B4O7:Eu3+具有较强的发光强度.  相似文献   

15.
棒状LaF3∶Eu3+纳米晶的制备与发光性能   总被引:1,自引:0,他引:1  
采用一种简单的液相反应法在室温下合成了棒状的LaF3∶Eu3+纳米晶, 对其结构和发光性能进行了表征. XRD分析结果表明, 室温下即可得到结晶良好的六方晶相的LaF3, 灼烧之后样品的衍射峰增强, 没有杂相产生. TEM照片表明, 棒状LaF3∶Eu3+纳米材料的直径为8 nm左右, 长度达到50 nm. 荧光光谱表明, 室温下合成的棒状LaF3∶Eu3+纳米晶的最强发射峰位于589 nm, 对应于Eu3+的5D0-7F1跃迁发射, 说明Eu3+占据LaF3基质中La3+晶格点的C2对称格位上. 同时Eu3+的猝灭摩尔分数为5%, 荧光寿命随着灼烧温度的升高而延长.  相似文献   

16.
用高温固相反应法合成了铌酸根NbO^3-4和Eu^3 共掺杂的正钽酸盐化合物Y1-xEuxTa1-yNbyO4,研究该体系中紫外光和X射线激发下的发光性能,研究表明,在紫外光激发下,YTaO4:Nb,Eu是一种比较有效的红色发光材料,激发能可以通过NbO^3 4离子传递给Eu^3 ,随钽酸盐中NbO^3-4基团浓度的增中,化合物的结构从M'型YTaO4变成褐钇铌型YNbO4结构,它的发光性质也随之改变。  相似文献   

17.
采用溶胶-凝胶-沉淀法制备ZnO/ZnS/2TiO2:Eu3+荧光粉,并采用X射线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)以及荧光光谱技术对其结构、组成、形貌和发光性能进行表征,探讨其发光机理。结果显示,ZnO/ZnS/2TiO2:Eu3+荧光粉的结构在温度高于600℃时趋于稳定状态,呈不规则结构,由ZnO、TiO2和ZnS构成。IR谱图表明,Ti-O-Ti桥氧键网络结构有利于Eu3+之间的能量传递。荧光光谱分析表明,引入TiO2使Eu3+光谱选律禁阻解除,提高了ZnO/ZnS/2TiO2:Eu3+荧光粉的发光性能,且当nZn(NO3)2:nTiO2=1:2时荧光粉的发光性能最好,612 nm处的5D0→7F2电偶极跃迁为最强发射峰,最佳退火温度为600℃。  相似文献   

18.
GdVO4 作为良好的激光基质被广泛研究 ,Gd VO4 掺Pr3 ,Nd3 ,Ho3 ,Er3 ,Tm3 ,Yb3 的激光材料已有报道[1~ 4 ] 。虽然GdVO4 ∶Eu3 不是激光材料 ,但它是良好的红光材料 ,主峰发射位于 619nm。GdVO4 ∶Eu3 的发光强度高 ,与Y2 O2 S∶Eu和YVO4 ∶Eu的发光为同一量级[5] 。Gd3 Eu3 是研究能量传递的极好体系。通常发光体的发射强度是随着温度的升高而降低的 ,最近的实验表明GdVO4 ∶Eu3 的发光强度随着温度的升高不但不降低反而不断增强 ,且温度高达 60 0K都尚未见饱和。1  实 验实…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号