首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
应用从头算方法和ABEEM/MM浮动电荷分子力场, 研究了水合碱土离子团簇Sr2+/Ba2+(H2O)n (n=1-6), 构建了离子-水相互作用的ABEEM/MM势能函数, 获得了水合离子团簇的稳定结构, 计算了结合能. 计算结果表明, ABEEM/MM方法的结果和从头算方法的结果有很好的一致性. 进一步应用ABEEM/MM对Sr2+和Ba2+水溶液进行了分子动力学模拟. 对Sr2+水溶液, 得到的Sr2+-水中氧原子的径向分布函数的第一和第二最高峰分别位于0.257和0.464 nm处, 第一和第二水合层的配位水分子数分别为9.2和11.4; 对Ba2+水溶液, 得到的Ba2+与水中氧原子的径向分布函数的第一和第二最高峰分别位于0.269和0.467 nm处, 第一和第二水合层的配位水分子数分别为9.9和12.4. 这与实验值或其它理论模拟结果有较好的一致性. 对比外层的水分子, 金属离子的极化作用使得溶液中第一水合层中水分子的O―H键长增长, HOH键角减小.  相似文献   

2.
采用B3LYP/6-31++G(d,p)方法,对内含式化合物X@(HBNH)12 (X = Li0/+, Na0/+, K0/+, Be0/2+, Mg0/2+, Ca0/2+, H和He)的不同对称性构型进行计算,讨论其最稳定构型的几何参数、包含能、平衡常数、自然电荷、自旋密度、电离势和HOMO-LUMO能隙。发现在X@(HBNH)12化合物中,客体Na0/+, K0/+, Mg0/2+, Ca0/2+, H和He几乎处在笼的中心,Li+处在中心附近0.021 nm的半径内,Li和Be0/2+很大程度上偏离笼的中心位置。Li+, Be2+, Mg2+和Ca2+与其它离子相比,更易嵌入笼内形成稳定的内含式化合物。而且,M@(HBNH)12 (M = Li, Na,K)的第一电离势比Cs(3.9 eV)原子小,是超碱金属。  相似文献   

3.
用分光光度法于293±1K温度下测定了由二价阳离子Cu2+和高价阴离子(CTS)4-(3,6-二磺酸根-1,8-二羟基萘酚)形成配阴离子Cu(CTS)2-在乙醇-水混合溶剂中的稳定常数随离子强度的变化.溶剂中乙醇的重量百分数分别为0、10、20、30、40和50;每个混合溶剂中的离子强度均为0.1-3.0mol·dm-3.分别用推广的Debye-Huckel方程[1]和Pitzer方程[2]计算了配离子的热力学稳定常数.发现对本体系Debye-Huckel方程完全不能适用,而基于Pitzer方程的多项式逼近法[3]则可得到满意的结果.简单讨论了介质效应和配位反应的标准迁移自由能.  相似文献   

4.
采用Car-Parrinello 分子动力学(CPMD)方法分别研究了水、甲醇和乙醇的液体微结构性质.研究结果显示:在水、甲醇和乙醇三个体系中O…O径向分布函数曲线的第一个峰位置分别为0.278、0.276 和0.275nm; O…H径向分布函数曲线的第一个峰位置分别为0.178、0.176和0.177 nm.表明基团(氢原子、甲基、乙基)的差异对O…O第一个峰的位置影响很小.但基团的差异对径向分布函数峰高的影响却很显著,由水到乙醇第一个峰的高度逐渐变高.空间分布函数表明氧原子和氢原子在溶剂分子周围有取向地分布,这与径向分布函数所表现出尖锐的第一个峰相一致.氢键分布分析显示,水、甲醇和乙醇的平均氢键数分别为3.62、1.99 和1.87,表明水形成了网状氢键结构,而甲醇、乙醇形成链状氢键结构.  相似文献   

5.
为了研究非配位型溶剂对聚酰胺-胺(PAMAM)树形分子的模板法制备CdS量子点的影响, 分别以水、甲醇及二者的混合物( ∶ =2∶1)为溶剂, 以4.5代PAMAM树形分子为模板制备了CdS量子点. 结果表明, 相同条件下, 以甲醇为溶剂时制备的CdS量子点为单晶, 平均直径2.7 nm, 尺寸分布窄, 发光强度高; 以水为溶剂制备的CdS量子点为多晶, 平均直径为5.7 nm, 尺寸分布宽, 发光强度低; 在甲醇与水的混合溶剂中制备的CdS量子点为单晶和多晶共存, 平均直径为4.1 nm, 尺寸分布及发光强度都居中. 这主要是由于树形分子的模板作用不同造成的. 树形分子在甲醇中能充分伸展, 起到内模板作用; 树形分子与水之间由双氢键作用而产生交联, 不利于Cd2+与树形分子内部基团的配位, 主要起到外模板作用; 在甲醇与水的混合溶剂中, 树形分子则同时起到了内模板和外模板作用.  相似文献   

6.
利用13C NMR光谱技术研究了Li在碳酸丙烯酯(PC)+N,N-二甲基甲酰胺(DMF)混合溶剂中的优先溶剂化现象. 根据溶剂分子中碳原子的化学位移随锂盐浓度的变化关系, 确定了与Li发生配位的原子. 碳原子的配位位移值随混合溶剂组成的变化关系表明, 在LiClO4+PC+DMF混合物中, DMF分子对Li的溶剂化作用较PC分子强. 定量计算得到, 在n(PC)∶n(DMF)=1∶1(摩尔比)的混合溶剂中, PC与DMF分子数在Li第一溶剂化层中的比率为0.12, 说明Li优先被DMF分子溶剂化.  相似文献   

7.
赵扬  王键吉  轩小朋  卓克垒 《化学学报》2006,64(21):2145-2150
利用13C NMR光谱技术研究了Li在碳酸丙烯酯(PC)+N,N-二甲基甲酰胺(DMF)混合溶剂中的优先溶剂化现象. 根据溶剂分子中碳原子的化学位移随锂盐浓度的变化关系, 确定了与Li发生配位的原子. 碳原子的配位位移值随混合溶剂组成的变化关系表明, 在LiClO4+PC+DMF混合物中, DMF分子对Li的溶剂化作用较PC分子强. 定量计算得到, 在n(PC)∶n(DMF)=1∶1(摩尔比)的混合溶剂中, PC与DMF分子数在Li第一溶剂化层中的比率为0.12, 说明Li优先被DMF分子溶剂化.  相似文献   

8.
在298.15 K, 常压下研究了1-丁基-3-甲基咪唑六氟磷酸盐([bmim][PF6])+水+甲醇、[bmim][PF6]+水+乙醇、[bmim][PF6]+水+2-丙醇、[bmim][PF6]+水+1-丙醇三元体系的相行为. 结果表明, 对于含甲醇、乙醇和2-丙醇的体系, 醇在水+醇溶液中摩尔分数分别为0.55-1.00、0.40-0.75 和0.35-0.50 时, 醇的水溶液与[bmim][PF6]可以互溶. 而水+1-丙醇体系没有此类现象. 这说明, 这类三元系的相行为不但取决于醇分子的大小, 而且取决于其结构.  相似文献   

9.
采用B3LYP/6-31G*方法,对内含式化合物X@B12P12(X=Li0/+、Na0/+、K0/+、Be0/2+、Mg0/2+、Ca0/2+、H和He)的不同对称性构型进行了计算,讨论其最稳定构型的几何参数、布居分析、偶极矩、电离势、包含能、振动频率、能隙和自旋密度. 发现在X@B12P12化合物中,客体X=Li、Na0/+、K0/+、Mg0/2+、Ca0/2+和He处在偏离笼的中心0.006 nm的半径内. Be2+沿着C3轴偏离中心点0.279 nm. 在Be@B12P12和H@B12P12的基态结构中,Be和H与笼上的B原子成键. 除Li@B12P12、 Be2+@B12P12和He@ B12P12外, 其余结构为Cs对称稳定构型.  相似文献   

10.
利用红外和拉曼光谱技术研究了Li在不同浓度、不同溶剂组成的LiBF4/N,N-二甲基甲酰胺-乙腈、LiBF4/N,N-二甲基甲酰胺-四氢呋喃电解质溶液中的优先溶剂化现象. 红外和拉曼光谱的分析表明, Li主要与DMF分子相互作用, 导致该分子的C=O伸缩振动谱带、N—C=O形变谱带、CH3摇摆谱带等发生了分裂. Li与其它溶剂分子的相互作用较弱, 谱带的分裂现象并不明显. Li溶剂化数的计算显示, Li第一溶剂化层内DMF分子的数目一般大于2, 这说明 Li在混合溶剂体系内优先与DMF分子相互作用. 量子化学计算支持了这一结论.  相似文献   

11.
Inter- and intramolecular nuclear magnetic quadrupole relaxation measurements have been used to study the system methanol (CH3OH)+ N,N-dimethylformamide (DMF)+NaI at 25°C. The dynamic behavior of the solvent molecules was investigated, throughout the composition range of the binary mixtures, by means of 14 N relaxation of DMF and 2 H of methanol-d 1 (CH 3 OD). The intermolecular relaxation of 23 Na+ in pure DMF was used to obtain information about the symmetry of the solvent electric dipole arrangement in the solvation sphere of the ion. The investigation of preferential solvation around Na+ in the binary mixtures was carried out by means of 23 Na+ relaxation measurements using, for the first time, both the CH 3 OH/CD 3 OD and the DMF/DMF-d 7 dynamic isotope effect. The results show that, throughout the composition range, there is preferential solvation by DMF. Furthermore, the use of the isotope effects of both components allowed for the first time a basic check of the reliability of the method since we obtained two independent sets of data for the composition of the Na+ solvation shell in the mixtures. The consistency of the two separate data sets demonstrates that the application of the dynamic isotope effect represents a powerful tool in preferential solvation studies.  相似文献   

12.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   

13.
A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be2+ determination. The complex of Be2+ with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be2+ concentration could then be determined indirectly. The results showed that in the range of 7 × 10−11 mol L−1 to 8.0 × 10−9 mol L−1, the ECL intensity had a linear relationship with the Be2+ concentrations, with the limit of detection of 2.35 × 10−11 mol L−1. This method was successfully used to detect Be2+ in real water samples.  相似文献   

14.
Heterogeneous equilibria for the distribution of Co2+ between the two layers formed in water + 1-butanol (1-BuOH) system have been investigated at ambient conditions. The study (confined to only 28 °C) reveals an interesting feature of the distribution equilibrium for the system whereby Co2+ has been found to exist in both the phases as the same species namely its aqua-complex thus directly demonstrating strong selective solvation of Co2+ by the water molecules. Almost constant values of refractive indices and densities were exhibited by the two layers regardless in which ratio the component liquids were mixed together. However, relative volumes of the layers varied smoothly on gradually changing the ratio of the two liquids in the overall “solvent system”. Also the Co2+ distribution coefficient (KD) changed appreciably on going to alcohol-richer “solvent systems” but KD remained fairly constant on adding different amounts of cobalt dichloride to any given “solvent system”.  相似文献   

15.
The complexation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ cations with the macrocyclic ligand, 18-Crown-6 (l8C6) in water–methanol (MeOH) binary systems as well as the complexation reactions between Ca2+ and Sr2+ cations with 18C6 in water–ethanol (EtOH) binary mixtures have been studied at different temperatures using conductometric method. The conductance data show that the stoichiometry of all the complexes is 1:1. It was found that the stability of 18C6 complexes with Mg2+, Ca2+, Sr2+ and Ba2+ cations is sensitive to solvent composition and in all cases, a non-linear behaviour was observed for the variation of log K f of the complexes versus the composition of the mixed solvents. In some cases, the stability order is changed with changing the composition of the mixed solvents. The selectivity order of 18C6 for the metal cations in pure methanol is: Ba2+ > Sr2+ > Ca2+ > Mg2+. The values of thermodynamic parameters (Δ H c ° and Δ S c °) for formation of 18C6–Mg2+, 18C6–Ca2+, 18C6–Sr2+ and 18C6–Ba2+complexes were obtained from temperature dependence of the stability constants. The obtained results show that the values of (Δ H c ° and Δ S c °) for formation of these complexes are quite sensitive to the nature and composition of the mixed solvent, but they do not vary monotonically with the solvent composition.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

16.
The kinetics of formation of AlSO 4 + has been investigated in mixtures of water and formamide. In contrast to similar measurements with BeSO4, the substitution of solvating formamide molecules by the sulfate ion cannot be observed on the aluminum cation. On the other hand, with Al3+ cations three well separated water substitution processes are observed, as compared to a single one only with Be2+. An explanation for this behavior and for the different pH dependence of the sulfate complex formation for Al3+ and Be2+ cations is suggested.  相似文献   

17.
Infrared laser action spectroscopy in a Fourier‐transform ion cyclotron resonance mass spectrometer is used in conjunction with ab initio calculations to investigate doubly charged, hydrated clusters of calcium formed by electrospray ionization. Six water molecules coordinate directly to the calcium dication, whereas the seventh water molecule is incorporated into a second solvation shell. Spectral features indicate the presence of multiple structures of Ca(H2O)72+ in which outer‐shell water molecules accept either one (single acceptor) or two (double acceptor) hydrogen bonds from inner‐shell water molecules. Double‐acceptor water molecules are predominately observed in the second solvent shells of clusters containing eight or nine water molecules. Increased hydration results in spectroscopic signatures consistent with additional second‐shell water molecules, particularly the appearance of inner‐shell water molecules that donate two hydrogen bonds (double donor) to the second solvent shell. This is the first reported use of infrared spectroscopy to investigate shell structure of a hydrated multiply charged cation in the gas phase and illustrates the effectiveness of this method to probe the structures of hydrated ions.  相似文献   

18.
Molecular dynamics simulations of CaCl2 solutions in water and methanol-water mixtures, with methanol concentrations of 5, 10, 50, and 90 mol %, at room temperature, have been performed. The methanol and water molecules have been modeled as flexible three-site bodies. Solvation of the calcium ions has been discussed on the basis of the radial and angular distribution functions, the orientation of the solvent molecules, and their geometrical arrangement in the coordination shells. Analysis of the H-bonds of the solvent molecules coordinated by Ca2+ has been done. Residence time of the solvent molecules in the coordination shell has been calculated. The preferential hydration of the calcium ions has been found over the whole range of the mixture composition. The water concentration in the first and second coordination shells of Ca2+ significantly exceeds the water content in the solution, despite the very similar interaction energy of the calcium ion with water and methanol. In aqueous solution and methanol-water mixtures, the first coordination shell of Ca2+ is irregular and long-living. The solvent molecules prefer the anti-dipole arrangement, but, in aqueous solutions and water-rich mixtures, the water molecules in the primary shell have only one H-bonded neighbor.  相似文献   

19.
The effect of the local interaction of a metal ion with the solvent on the conformations of calcium complexes of arylazacrown ethers and an azacrown-containing dye was studied using the density functional method with the PBE and B3LYP functionals. The structures were studied and the interaction energies were determined for the calcium complexes with n = 1–12 water or acetonitrile molecules. It was found that the inner coordination sphere of the free Ca2+ cation contains six H2O or seven MeCN molecules. The cation—acetonitrile interaction energy is higher than the cation—water interaction energy up to the moment the second solvation shell of the cation is almost complete (n = 11). The inner coordination sphere of Ca2+ in the macrocycle cavity contains at most three water molecules, while the fourth one is displaced to the second coordination sphere. Taking into account the local interaction with the solvent (H2O or MeCN), the conformers of the calcium complexes of arylazacrown ethers and the azacrown-containing dye were studied. It was shown that the presence of two to four water molecules in the coordination sphere of the cation reduces the relative energies of the conformers with broken metal—nitrogen bond, thus favoring ground-state metal recoordination. For Part 1, see Ref. 1. Dedicated to Academician A.L. Buchachenko on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1981–1992, September, 2005.  相似文献   

20.
The complexation of a series of new Schiff bases containing theN-phenylaza-15-crown-5 (Ph-A15C5) moiety with alkali and alkaline-earth metal ions (incl. Be2+ and Mg2+, is studied by means of UV-Vis spectroscopy. The corresponding stability constant values are determined and discussed from two aspects: the position of the Ph-A15C5 moiety in the ligand molecule and the nature of the metal ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号