首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
物理学   1篇
  2021年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
排序方式: 共有10条查询结果,搜索用时 203 毫秒
1
1.
The structural and dynamical properties of high-spin Ru2+ in aqueous solution have been theoretically studied using molecular dynamics (MD) simulations. The conventional MD simulation based on pair potentials gives the overestimated average first shell coordination number of 9, whereas the value of 5.9 was observed when the three-body corrected function was included. A combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation has been performed to take into account the many-body effects on the hydration shell structure of Ru2+. The most important region, the first hydration shell, was treated by ab initio quantum mechanics at UHF level using the SBKJC VDZ ECP basis set for Ru2+ and the 6-31G basis sets for water. An exact coordination number of 6 for the first hydration shell was obtained from the QM/MM simulation. The QM/MM simulation predicts the average Ru2+–O distance of 2.42 Å for the first hydration shell, whereas the values of 2.34 and 2.46 Å are resulted from the pair potentials without and with the three-body corrected simulations, respectively. Several other structural properties representing position and orientation of the solvate molecules were evaluated for describing the hydration shell structure of the Ru2+ ion in dilute aqueous solution. A mean residence time of 7.1 ps was obtained for water ligands residing in the second hydration shell.  相似文献   
2.
Quantum mechanical charge field (QMCF) MD simulation has been performed to investigate the structure and dynamics of Hg2+ hydrate. The first-shell hexacoordinated [Hg(H2O)6]2+ complex with an average Hg2+-O distance of 2.40 Å is dominantly found, which corresponds to the neutron diffraction and extended X-ray absorption fine structure (EXAFS) experiments. Other species, in particular the 7-fold coordinated complexes, can be formed transiently, according to the water exchange processes with an associative interchange (Ia) mechanism. The second hydration shell exhibits a Hg2+-O distance of 4.6 Å with a coordination number of ~ 14. The mean residence times (MRTs) of first- and second-shell waters clearly indicate a strong “structure-forming” ability of Hg2+ in aqueous solution.  相似文献   
3.
The hydration structure of Cr(2+) has been studied using molecular dynamics (MD) simulations including three-body corrections and combined ab initio quantum mechanical/molecular mechanical (QM/MM) MD simulations at the Hartree-Fock level. The structural properties are determined in terms of radial distribution functions, coordination numbers, and several angle distributions. The mean residence time was evaluated for describing ligand exchange processes in the second hydration shell. The Jahn-Teller distorted octahedral [Cr(H(2)O)(6)](2+) complex was pronounced in the QM/MM MD simulation. The first-shell distances of Cr(2+) are in the range of 1.9-2.8 A, which are slightly larger than those observed in the cases of Cu(2+) and Ti(3+). No first-shell water exchange occurred during the simulation time of 35 ps. Several water-exchange processes were observed in the second hydration shell with a mean residence time of 7.3 ps.  相似文献   
4.
An ab initio quantum mechanical charge field (QMCF) molecular dynamics simulation has been performed to study the structural and dynamical properties of a dilute aqueous HCl solution. The solute molecule HCl and its surrounding water molecules were treated at Hartree‐Fock level in conjunction with Dunning double‐ζ plus polarization function basis sets. The simulation predicts an average H? Cl bond distance of 1.28 Å, which is in good agreement with the experimental value. The HHCl···Ow and ClHCl···Hw distances of 1.84 and 3.51 Å were found for the first hydration shell. At the hydrogen site of HCl, a single water molecule is the most preferred coordination, whereas an average coordination number of 12 water molecules of the full first shell was observed for the chloride site. The hydrogen bonding at the hydrogen site of HCl is weakened by proton transfer reactions and an associated lability of ligand binding. Two proton transfer processes were observed in the QMCF MD simulation, demonstrating acid dissociation of HCl. A weak structure‐making/breaking effect of HCl in water is recognized from the mean residence times of 2.1 and 0.8 ps for ligands in the neighborhood of Cl and H sites of HCl, respectively. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
5.
Combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations, including only the first and the first and second hydration shells in the QM region, were performed for TiIII in aqueous solution. The hydration structure of TiIII is discussed in terms of radial distribution functions, coordination-number distributions and several angle distributions. Dynamical properties, such as librational and vibrational motions and TiIII-O vibrations, were evaluated. A fast dynamical Jahn-Teller effect of TiIII(aq) was observed in the QM/MM simulations, in particular when the second hydration shell was included into the QM region. The results justify the computational effort required for the inclusion of the second hydration shell into the QM region and show the importance of this effort for obtaining accurate hydration-shell geometries, dynamical properties, and details of the Jahn-Teller effect.  相似文献   
6.
Hydration structure and dynamics of an aqueous Sc(iii) solution were characterized by means of an extended ab initio quantum mechanical/molecular dynamical (QM/MM) molecular dynamics simulation at Hartree-Fock level. A monocapped trigonal prismatic structure composed of seven water molecules surrounding scandium(iii) ion was proposed by the QM/MM simulation including the quantum mechanical effects for the first and second hydration shells. The mean Sc(iii)-O bond length of 2.14 ? was identified for six prism water molecules with one capping water located at around 2.26 ?, reproducing well the X-ray diffraction data. The Sc(iii)-O stretching frequency of 432 cm(-1) corresponding to a force constant of 130 N m(-1), evaluated from the enlarged QM/MM simulation, is in good agreement with the experimentally determined value of 430 cm(-1) (128 N m(-1)). Various water exchange processes in the second hydration shell of the hydrated Sc(iii) ion predict a mean ligand residence time of 7.3 ps.  相似文献   
7.
Structural and dynamical properties of the Cr(III) ion in aqueous solution have been investigated using a combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation. The hydration structure of Cr(III) was determined in terms of radial distribution functions, coordination numbers, and angular distributions. The QM/MM simulation gives coordination numbers of 6 and 15.4 for the first and second hydration shell, respectively. The first hydration shell is kinetically very inert but by no means rigid and variations of the first hydration shell geometry lead to distinct splitting in the vibrational spectra of Cr(H(2)O)(6) (3+). A mean residence time of 22 ps was obtained for water ligands residing in the second hydration shell, which is remarkably shorter than the experimentally estimated value. The hydration energy of -1108 +/- 7 kcal/mol, obtained from the QM/MM simulation, corresponds well to the experimental hydration enthalpy value.  相似文献   
8.
9.
Structural Chemistry - To achieve high efficient donors for organic solar cells, structural, electronic, and optical properties of the At-π-Ac-π-At small molecules were systematically...  相似文献   
10.
The novel ab initio quantum mechanical charge field (QMCF) molecular dynamics simulation at the Hartree-Fock level has been employed to investigate hydration structure and dynamics of hydrogen fluoride in aqueous solution. The average H-F bond length of 0.93 A obtained from the QMCF MD simulation is in good agreement with the experimental data. The HHF...Ow distance of 1.62 A was evaluated for the first hydration shell, and 2.00 A was observed for the FHF...Hw distance. The stability of hydrogen bonding is more pronounced in the hydrogen site of hydrogen fluoride, with a single water molecule in this part of the first hydration shell. A wide range of coordination numbers between 3 and 9 with an average value of 5.6 was obtained for the fluorine site. The force constants of 819.1 and 5.9 N/m were obtained for the HHF-FHF and HHF...Ow interactions, respectively, proving the stability of the nondissociated form of hydrogen fluoride in aqueous solution. The mean residence times of 2.1 and 2.5 ps were determined for ligand exchange processes in the neighborhood of fluorine and hydrogen atoms of hydrogen fluoride, respectively, indicating a weak structure-making effect of hydrogen fluoride in water. The corresponding H-bond lifetimes attribute this effect to the H atom site of HF.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号