首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
纳米科学技术概述   总被引:1,自引:0,他引:1  
 一、历史背景在20世纪90年代的科技报刊上,经常出现"纳米材料"和"纳米技术"这种名词。什么是"纳米材料"呢?通俗一点说,就是用尺寸只有几个纳米的极微小的颗粒组成的材料。1纳米为10亿分之一米,用肉眼根本看不见。但用纳米颗粒组成的材料却具有许多特异性能。因此,科学家又把它们称为"超微粒"材料和"21世纪新材料"。而纳米材料并非完全是最近才出现的。  相似文献   

2.
《物理》2007,36(7):572-574
1胡刚复奖 项目名称:信息功能纳米材料的制备与物性测量技术 主要完成人:顾长志(中国科学院物理研究所) 高可靠性信息纳米功能材料的制备与物性测量技术是目前纳米科技领域的重要研究课题,特别是关于纳米材料的原位物性测量,以及纳米尺度低维人工结构、  相似文献   

3.
在SiO2分子筛内CdS纳米晶的内延生长及特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
于广友  蔡强 《发光学报》1997,18(2):182-184
近年来,国际上纳米材料科学及其应用的研究非常活跃.纳米材料的尺寸效应和面效应与体材料相比有特殊的物理和化学特性,尤其是它的界面效应更为明显,因而米材料作为一种新兴的材料,受到了广泛的重视.但到目前为止,纳米材料的制备大采用化学合成的方法如悬胶法、凝胶-溶胶法等,而利用这些方法制备的纳米材料通常一定的尺寸分布,这主要是由于纳米材料在一定温度和时间下的凝结和分解等原因造的[1],因而严重地影响了纳米材料在各方面的特性.  相似文献   

4.
纳米科学技术及纳米材料科学的发展趋势   总被引:2,自引:0,他引:2  
 在当代,随着高新技术的发展,材料和器件的微型化成为一个重要的发展方向。这样在从宏观走向微观的过程中,出现了介于宏观与微观之间的纳米学。一、纳米科学技术的含义和包含范围纳米是物理学中一个长度计量单位,即1纳米(nm)=10-9米(m)。纳米尺度(0.1~100纳米)比原子尺寸略大(约为十几个原子排列起来那么长),大约相当于一根头发丝直径的万分之一。纳米世界是相当微观的世界。纳米科技包括:纳米电子学、纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米显微学、纳米机械学、纳米加工和纳米测量等多种学科。  相似文献   

5.
纳米材料的奇异特性   总被引:1,自引:0,他引:1  
纳米是一个长度计量单位,1纳米等于10^-9米,纳米结构通常是指尺寸在100纳米以下(1-100nm)的微小结构,纳米技术是在纳米尺寸上对物质和材料进行研究处理的技术,其本质上是一种用单个原子、分子制造物质的科学技术。目前,世界上已形成发展纳米科技的“三大板块”的格局,即美国、亚洲和欧盟,纳米科技的研究和发展已进入一个新阶段,纳米技术将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式。  相似文献   

6.
张立德 《物理》1995,24(8):470-473,502
详细介绍了第二届国际纳米学术会议的概况,对高强、高韧、高硬度纳米结构材料、纳米磁性材料和纳为六功能材料的现状及发展趋势进行了评述,对纳米材料界功述的几种不同观点及本届大会对纳米材料界面结构的看全面进行了介绍,此外,还对纳米材料科学的发展趋势和新动向进行了一些展望。  相似文献   

7.
纳米TiO2预分离/富集FAAS法同时测定Cr(Ⅲ)和Cr(Ⅵ)的研究   总被引:1,自引:1,他引:1  
纳米材料是近年来受到广泛重视的一种新兴功能材料,具有一系列新异的物理化学特性和一些优于传统材料的特殊性能.其中一点是随着粒径的减小,表面原子数迅速增大,表面原子周围缺少相邻的原子,具有不饱和性,易与其他原子相结合而稳定下来,因而具有很大的化学活性.纳米材料对许多金属离子具有很强的吸附能力,是痕量元素分析较为理想的分离富集材料.文章利用火焰原子吸收法(FAAS)研究了纳米TiO2(金红石型)对Cr(Ⅵ)/Cr(Ⅲ)的吸附性能,并应用于水样中铬的形态分析.吸附体系中pH对Cr(Ⅵ)和Cr(Ⅲ)的吸附有很大影响,当pH>6时,纳米TiO2对Cr(Ⅲ)的吸附率大于90%,而对Cr(Ⅵ)基本不吸附,从而达到二者的分离.pH 6.5微酸性条件下,纳米TiO2吸附Cr(Ⅲ),然后以2mol.L-1HCl洗脱,得到Cr(Ⅲ)的含量,剩余水溶液中测定Cr(Ⅵ)含量.该法测定Cr(Ⅵ)和Cr(Ⅲ)的检出限分别为57和41 ng·mL-1,RSD分别为2.6%和3.4%(2.0μg·mL-1Cr,n=6),Cr(Ⅵ)和Cr(Ⅲ)的线性范围分别为0~9.0和0.1~10μg·mL-1.该法选择性好,大多数共存离子不干扰测定.该法简便快速,用于工业废水、地表水中铬的形态分析,结果较满意.  相似文献   

8.
钱俊 《物理》2013,(11)
微纳加工领域是从事物理学研究与应用开发人员,特别是从事纳米材料与器件研究的物理工作者十分关注和重视的领域。这是由于人们在对纳米材料性能的研究中发现,性能与材料的微观结构尺寸的变化关系密切。例如,随着材料尺度的减小,由于表面效应、体积效应和量子尺寸效应的影响,材料的物理性能和采用该材料制作的器件特性等都可能表现出与宏观体相材料和相关器件特性显著不同的特点。这些特点是材料性能对微观结构尺寸变化的敏感性所导致的结果。正是由于这种敏感性,使得无论在纳米材料科学问题研究还是在纳米器件发展应用中,对材料生长控制和微加工的精确程度都提出了极为苛刻的要求。所以,需要纳米、甚至原子、分子层次的微纳加工技术,以探索材料与器件的新特性。可见,基础科学的研究发展往往需要技术科学提供强有力的支持,要想探索在纳米尺度下物质的变化规律、新的性质和器件功能及可能的应用领域,同样离不开相应的技术手段。微纳加工技术作为当今高技术发展的重要领域之一,是实现功能结构与器件微纳米化的基础。借助微纳加工,人们可以按照需求来设计、制备具有优异性能的纳米材料或纳米结构及器件与装置,发展探测和分析纳米尺度下的物理、化学和生物等现象的方法和仪器,准确地表征纳米材料或纳米结构的物性,探索纳米尺度下物质运动的新规律和新现象。  相似文献   

9.
纳米材料的分类及其物理性能   总被引:7,自引:0,他引:7  
 纳米技术是20世纪80年代末迅速发展起来的一门交叉性很强的综合学科,是在0.1-100纳米尺度上研究和利用原子与分子的结构,特性及其相互作用的高新技术。著名的诺贝尔奖获得者费恩曼在60年代就预言:如果对物体微小规模上的排列加以某种控制的话,物体就能得到大量的异乎寻常的特性。他所说的物体就是现在的纳米材料。纳米材料研究是目前材料科学研究的一个热点,纳米技术被公认为是21世纪最具有前途的科研领域。1.纳米材料的分类以“纳米”来命名的材料是在20世纪80年代,它作为一种材料的定义把纳米颗粒限制到1-100nm范围。  相似文献   

10.
《发光学报》2006,27(6):916-916
由中国物理学会发光分会、中国稀土学会发光专业委员会主办,中国科学院激发态物理重点实验室承办,海南大学理工学院协办的第1届掺杂纳米材料发光性质学术会议于2006年11月5~7日在海南省海口市举行。这是国内外举办的首次掺杂纳米发光材料方面的专题学术研讨会。来自全国20个省市49个单位、香港地区(3人)以及美国(2人)、荷兰(1人)的专家学者总计100余人出席了此次会议。会议共收录论文摘要101篇,其中大会邀请报告8篇、分会邀请报告12篇、口头报告36篇、张贴报告45篇。内容涉及到:新型纳米发光材料与新的纳米合成、组装技术;纳米材料发光中的激发态过程;上转换纳米发光材料;纳米材料中的限域效应、表面效应及其诱导的新现象;表面修饰与核壳结构的纳米材料;一维纳米材料线、管及纳米薄膜的结构与发光性质;掺杂纳米材料发光中的新概念、新理论.  相似文献   

11.
纳米介孔ZrO2及其表面修饰的发光性质   总被引:5,自引:2,他引:3  
水热合成法制备的高度有序多孔ZrO2具有规则六角排列、均匀纳米孔洞(约1.8nm),并且其蓝、(近)紫外光发射强度比纳米微晶材料高2个数量级。本文研究了纳米介孔ZrO2这种不同于常规体材料与纳米晶材料的特殊发光性质。通过化学方法对纳米介孔ZrO2进行表面修饰后,能进一步提高其光发射聋度约3倍。通过这些发光性质的研究,以期增进对ZrO2发光机理的认识。  相似文献   

12.
材料物理的新进展—纳米固体材料   总被引:9,自引:0,他引:9  
朱星 《物理》1991,20(4):203-206
纳米固体材料(nanometer sized materials)的出现,引起了国际上物理、材料、化学及工程科学家们的很大兴趣.这是由晶粒或颗垃尺寸为 1—15 nm(1nm=10-9m)的超细金属、陶瓷、高分子组成的固体材料.与固体中传统的晶体、非晶体不同的是,纳米晶体材料中存在着既无长程序、又无短程序的新的固态结构.由于其特殊的原子组态,已观察到一系列不寻常的物理学和力学效应。同时也为制备相图限制之外的合金或具有特殊结合键的新型材料提供了可能性.  相似文献   

13.
纳米微晶材料的结构和性质   总被引:36,自引:0,他引:36  
王广厚  韩民 《物理学进展》1990,10(3):248-289
纳米微晶材料是纳米量级晶粒所构成的多晶物质,其晶界区域中存在与长程有序晶态和短程有序非晶态结构不相同的“气体状”的结构。本文讨论了纳米微晶材料的制备方法、结构特点和奇异性质及其在材料科学中的应用。  相似文献   

14.
王必本  朱恪  王强 《物理学报》2016,65(3):38102-038102
以Se粉和MoO_3粉为源材料,利用热丝化学气相沉积在N_2中制备了Se和MoSe_2纳米片.利用场发射扫描电子显微镜、透射电子显微镜、X射线能谱仪、显微Raman光谱仪和X射线光电子谱仪对Se和MoSe_2纳米片的结构和组成进行了系统研究.结果表明:Se粉和M0O_3粉的混合与否直接影响了Se和MoSe_2纳米片的形成和结构;当Se粉和MoO_3粉充分混合时形成Se纳米片,而Se和MoO_3粉分开放置时则形成MoSe_2纳米片.研究发现这是由于Se和MoO_3粉的混合与否使Se和MoO_3在气相中的不同反应所致.对Se和MoSe_2纳米片的发光性能研究表明,它们分别产生了774,783和784 nm的发光峰,不同于单层MoSe_2纳米片的发光性能.这些结果丰富了对二维Se基纳米材料的合成和光学性能的知识,有助于对Se基二维纳米材料的光电器件的研制.  相似文献   

15.
纳米材料用于吸收电磁波的物理机制   总被引:1,自引:0,他引:1  
巩晓阳  曹万民 《物理与工程》2007,17(5):39-41,62
本文从物理学的角度分析吸波材料与电磁波作用的影响因素和纳米材料在吸波应用上的微观机制,随着纳米材料和纳米科技的深入发展,纳米吸波材料将以更优异的性能广泛应用于军事装备和民用电磁波防护上.  相似文献   

16.
 异军突起的纳米技术“纳米”是英文namometer的译名,是一种长度单位,1纳米为百万分之一毫米,即1毫微米,也就是十亿分之一米,约相当于45个原子串起来那么长。纳米结构通常是指尺寸在100纳米以下的微小结构。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,明显表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。纳米技术其实就是一种用单个原子、分子制造物质的技术。从迄今为止的研究状况看,纳米技术分为三种。  相似文献   

17.
移动供热技术的关键在于蓄热材料。针对当前移动供热技术中,相变材料导热系数低、相变温度低、放热不稳定等不足,本文设计开发了一种新型纳米复合蓄热相变材料。研究了纳米铜、纳米锌、纳米铁、纳米镍和纳米铝对赤藻糖醇的蓄热性能影响,运用时间曲线法确定纳米铜作为基材的添加物。采用超声振荡预处理和添加分散剂等方法,发现按1:1添加的油酸与十二烷基硫酸钠二元混合物8 h无沉降。对纳米铜质量分数不同的六个纳米铜赤藻糖醇样本材料性能进行测定,结果表明添加0.4%的纳米铜赤藻糖醇过冷度下降89.5%,潜热值下降0.3%,固态、液态导热系数分别增大2.8倍和3.3倍。  相似文献   

18.
纳米固体材料是80年代研制成功的一种具有新型结构的材料.它是由粒度为1-15nm的超微粒子,在保持表面洁净的条件下加压成型而得到的固体材料.它包括纳米金属、陶瓷、非晶态材料及复相材料等,也可分为纳米晶态材料和晶态玻璃,即纳米晶态材料的纳米颗粒可以是晶体,也可以是非晶.纳米固体材料的结构既不同于长程有序的晶体,也不同于长程无序、短程有序的非晶态玻璃,而表现为长、短程均无序的“类气体”固态结构.纳米固体材料是无数微粒子的聚合体,界面原子的比例很高,而纳米材料颗粒之间通过界面发生相互作用,会在颗粒之间产生量子输运的隧道效…  相似文献   

19.
纳米固体——结构像气体的新型材料   总被引:2,自引:0,他引:2  
 80年代中期联邦德国和美国的一些材料科学家们在实验室里首先制造出了一种新型的固体材料.它是由尺寸仅为几个纳米(10-9米)的超细微粒压制而成的人工凝聚态固体,通常称之为纳米固体材料或纳米尺度材料.对这种材料的研究发现,它具有全新的“类气态”(gas-like)结构,性能十分奇特.如纳米固体铁的断裂应力比常规铁材料一下子提高了近12倍;纳米固体铜又比一般铜材料的热扩散增强了近一倍.更为奇怪的是,普通状态下呈脆性的陶瓷,在纳米固体材料中却能被弯曲,其塑性形变竟然高达100%.这使得长期为增强陶瓷韧性而费尽心血的科学工作者们大为振奋.纳米固体材料的一系列特性,引起了科学家们的浓厚兴趣,并积极开展了对这种材料的结构特点、制造方法、特性和应用的研究.  相似文献   

20.
张冬冬  王锐  蒋烨平  戚桂村  王琛  裘晓辉 《物理》2011,40(9):573-579
纳米尺度的材料具有许多不同于宏观体材料的奇特的物理和化学特性.了解纳米结构的物性随材料尺寸及形状的变化关系,对于设计和合成具有特定功能的纳米材料有重要的指导意义.静电力显微镜技术为研究微纳米尺度下材料的电学特性提供了强有力的工具.文章介绍了这种测量技术的基本原理,并列举了几种在静电力显微镜基础上发展起来的纳米材料电学性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号