首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The nonlinear global forced dynamics of an axially moving viscoelastic beam, while both longitudinal and transverse displacements are taken into account, is examined employing a numerical technique. The equations of motion are derived using Newton′s second law of motion, resulting in two partial differential equations for the longitudinal and transverse motions. A two-parameter rheological Kelvin–Voigt energy dissipation mechanism is employed for the viscoelastic structural model, in which the material, not partial, time derivative is used in the viscoelastic constitutive relations; this gives additional terms due to the simultaneous presence of the material damping and the axial speed. The equations of motion for both longitudinal and transverse motions are then discretized via Galerkin’s method, in which the eigenfunctions for the transverse motion of a hinged-hinged linear stationary beam are chosen as the basis functions. The subsequent set of nonlinear ordinary equations is solved numerically by means of the direct time integration via modified Rosenbrock method, resulting in the bifurcation diagrams of Poincaré maps. The results are also presented in the form of time histories, phase-plane portraits, and fast Fourier transform (FFTs) for specific sets of parameters.  相似文献   

2.
The nonlinear, forced, damped vibrations of simply-supported rectangular sandwich plates with a viscoelastic core are studied. The general, nonlinear dynamic equations of asymmetrical sandwich plates are derived using the virtual work principle. Damping is taken into account by modelling the viscoelastic core as a Voigt-Kelvin solid. The harmonic balance method is employed for solving the equations of motion. The influence of the thickness of the layers and material properties on the nonlinear response of the plates is studied.  相似文献   

3.
盛冬发  程昌钧 《力学季刊》2006,27(2):247-254
本文从考虑损伤的粘弹性材料的卷积型本构关系出发,建立了在小变形下损伤粘弹性梁-柱的控制方程。提出了以卷积形式表示的梁-柱弯曲问题的泛函,并给出了损伤粘弹性梁-柱的广义变分原理。应用这个广义变分原理,可分别给出梁-柱位移和损伤满足的基本方程,以及相应的初始条件和边界条件。应用Galerkin截断和非线性动力学的数值分析方法,分析了两端简支损伤粘弹性梁柱的动力学行为,给出了不同的材料参数对系统响应的影响。  相似文献   

4.
This paper aims to study the nonlinear-forced vibrations of a viscoelastic cantilever with a piecewise piezoelectric actuator layer on its top surface using the method of Multiple Scales. The governing equation of motion is a second-order nonlinear ordinary differential equation with quadratic and cubic nonlinearities which appear in stiffness, inertia, and damping terms. The nonlinear terms are due to the piezoelectricity, viscoelasticity, and geometry of the system. Forced vibrations of the system are investigated in the cases of primary resonance and non-resonance hard excitation including subharmonic and superharmonic resonances. Analytical expressions for frequency responses are derived, and the effects of different parameters including damping coefficient, thickness to width ratio of the beam, length and position of the piezoelectric layer, density of the beam, and the piezoelectric coefficient on the frequency-response curves are discussed for each case. It is shown that in all these cases, the response of the system follows a softening behavior due to the existence of the piezoelectric layer. The piezoelectric layer provides an effective tool for active control of vibration. In addition, the effect of the viscoelasticity of the beam on passive control of amplitude of vibration is illustrated.  相似文献   

5.
A system of three nonlinear partial differential equations describing the flexural-flexural-torsional vibrations of a rotating slender cantilever beam of arbitrary cross-section is derived using Hamilton’s principle. It is assumed that the center of gravity and the shear center are at different points. The interaction between flexural and torsional vibrations is accounted for in the linear and nonlinear parts of model Published in Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 123–132, May 2008.  相似文献   

6.
The problem of geometrically non-linear steady state vibrations of beams excited by harmonic forces is considered in this paper. The beams are made of a viscoelastic material defined by the classic Zener rheological model - the simplest model that takes into account all the basic properties of real viscoelastic materials. The constitutive stress-strain relationship for this type of material is given as a differential equation containing derivatives of both stress and strain. This significantly complicates the solution to the problem. The von Karman theory is applied to describe the effects of geometric nonlinearities of beam deformations. The equations of motions are derived using the finite element methodology. A polynomial approximation of bending moments is used. The order of basis functions is set so as to obtain a coherent approximation of moments and displacements. In the steady-state solution of equations of motion, only one harmonic is taken into account. The matrix equations of amplitudes are derived using the harmonic balance method and the continuation method is applied for solving them. The tangent matrix of equations of amplitudes is determined in an explicit form. The stability of steady-state solution is also examined. The resonance curves for beams supported in a different way are shown and the results of calculation are briefly discussed.  相似文献   

7.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

8.
粘弹性地基上弹性梁的自由振动分析   总被引:7,自引:0,他引:7  
刘学山  胥兵 《力学季刊》1999,20(4):470-476
本文将文克尔弹性地基梁模型中的弹簧用粘弹性元件来替代,建立了三元件文克尔粘弹性地基止粘弹性梁的静力和动力本构方程,求出了粘弹性地基上弹性梁的自由振动的级数解。并且对不同的振动情况进行讨论,最后给出了算例及结论。  相似文献   

9.
The frequency response of a cracked beam supported by a nonlinear viscoelastic foundation has been investigated in this study. The Galerkin method in conjunction with the multiple scales method (MSM) is employed to solve the nonlinear governing equations of motion. The steady-state solutions are derived for the two different resonant conditions. A parametric sensitivity analysis is carried out and the effects of different parameters, namely the geometry and location of crack, loading position and the linear and nonlinear foundation parameters, on the frequency-response solution are examined.  相似文献   

10.
To model the axially moving viscoelastic web material a two-dimensional rheological element is used in this paper. This model is formed by elastic region and viscoelastic region. Using two-dimensional rheological model and the plate theory the differential equation of motion in the form of the eighth-order linear partial differential equation that governs the transverse vibrations of the system is derived. The Galerkin method is applied to simplify the governing equation into two-order truncated system defined by the set of ordinary differential equations. Numerical investigations of dynamic stability of the paper web were carried out. The effects of the transport speed and the internal damping on the dynamic behaviour of the axially moving web are presented in this paper.  相似文献   

11.
The Multiple-Scale Method is applied directly to a one-dimensional continuous model to derive the equations governing the asymptotic dynamic of the system around a bifurcation point. The theory is illustrated with reference to a specific example, namely an internally constrained planar beam, equipped with a lumped viscoelastic device and loaded by a follower force. Nonlinear, integro-differential equations of motion are derived and expanded up to cubic terms in the transversal displacements and velocities of the beam. They are put in an operator form incorporating the mechanical boundary conditions, which account for the lumped viscoelastic device; the problem is thus governed by mixed algebraic-integro-differential operators. The linear stability of the trivial equilibrium is first studied. It reveals the existence of divergence, Hopf and double-zero bifurcations. The spectral properties of the linear operator and its adjoint are studied at the bifurcation points by obtaining closed-form expressions. Notably, the system is defective at the double-zero point, thus entailing the need to find a generalized eigenvector. A multiple-scale analysis is then performed for the three bifurcations and the relevant bifurcation equations are derived directly in their normal forms. Preliminary numerical results are illustrated for the double-zero bifurcation.  相似文献   

12.
Javadi  M.  Noorian  M. A.  Irani  S. 《Meccanica》2019,54(3):399-410

Divergence and flutter instabilities of pipes conveying fluid with fractional viscoelastic model has been investigated in the present work. Attention is concentrated on the boundaries of the stability. Based on the Euler–Bernoulli beam theory for structural dynamics, viscoelastic fractional model for damping and, plug flow model for fluid flow, equation of motion has been derived. The effects of gravity, and distributed follower forces are also considered. By transferring the equation of motion to the Laplace domain and using the Galerkin method, the characteristic equations are obtained. By solving the eigenvalue problem, frequencies and dampings of the system have been obtained versus flow velocity. Some numerical test cases have been studied with viscoelastic fractional model and the effect of the fractional derivative order and the retardation time is investigated for various boundary conditions.

  相似文献   

13.
研究了黏弹性传动带在1:1内共振时的横向非平面非线性动力学特性. 首先,利用Hamilton原理建立了黏弹性传动带横向非平面非线性动力学方程. 然后综合应用多尺度法和Galerkin离散法对偏微分形式的动力学方程进行摄动分析,得到了四维平均方程. 对平均方程的稳定性进行了分析,从理论上讨论了动力系统解的稳定性变化情况. 最后数值模拟结果表明黏弹性传动带系统存在混沌运动、概周期运动和周期运动.   相似文献   

14.
The nonlinear resonance vibrations and stability of nonlinear orthotropic shells partially filled with a liquid and subjected to longitudinal and transverse periodic loading are studied. The equations of motion are derived with regard for the existence and nonlinear interaction of conjugate flexural modes of the shell. Stationary regimes for forced and parametric vibrations are found and analyzed for stability under the conditions of fundamental and subharmonic resonances. The amplitude–frequency characteristics of these regimes are constructed for various parameters of the system  相似文献   

15.
The paper deals with numerical analysis of nonlinear vibrations of viscoelastic systems under a stochastic action in the form of a Gaussian stationary process with rational spectral density. The analysis is based on numerical simulation of the original stationary process, numerical solution of the differential equations describing the motion of the system, and computation of the maximum Lyapunov exponent if the stability of this motion is studied. An example of a plate subjected to a random stationary load applied in its plane is used to consider specific issues concerning the application of the proposed method and the peculiarities of the behavior of geometrically nonlinear elastic and viscoelastic stochastic systems. Special attention is paid to the interaction of a deterministic periodic action and a stochastic action from the viewpoint of stability of the system motion. It is shown that in some cases imposing a “colored” noise may stabilize an unstable system subjected to a periodic load.  相似文献   

16.
The nonlinear dynamic behavior of flexible beams is described by nonlinear partial differential equations. The beam model accounts for the tension of the neutral axis under vibrations. The Bubnov–Galerkin method is used to derive a system of ordinary differential equations. The system is solved by the multiple-scale method. A system of modulation equations is analyzed  相似文献   

17.
Dynamical analysis of axially moving plate by finite difference method   总被引:1,自引:0,他引:1  
The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.  相似文献   

18.
This paper investigates the steady-state responses of a Timoshenko beam of infinite length supported by a nonlinear viscoelastic Pasternak foundation subjected to a moving harmonic load. The nonlinear viscoelastic foundation is assumed to be a Pasternak foundation with linear-plus-cubic stiffness and viscous damping. Based on Timoshenko beam theory, the nonlinear equations of motion are derived by considering the effects of the shear deformable beams and the shear modulus of foundations at the same time. For the first time, the modified Adomian decomposition method(ADM) is used for solving the response of the beam resting on a nonlinear foundation. By employing the standard ADM and the modified ADM, the nonlinear term is decomposed, respectively. Based on the Green's function and the theorem of residues presented,the closed form solutions for those linear iterative equations have been determined via complex Fourier transform. Numerical results indicate that two kinds of ADM predict qualitatively identical tendencies of the dynamic response with variable parameters, but the deflection of beam predicted by the modified ADM is smaller than that by the standard ADM. The influence of the shear modulus of beams and foundation is investigated. The numerical results show that the deflection of Timoshenko beams decrease with an increase of the shear modulus of beams and that of foundations.  相似文献   

19.
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.  相似文献   

20.
Thermo-mechanical vibrations of a simply supported spring-mass-beam system are investigated analytically in this paper. Taking into account the thermal effects, the nonlinear equations of motion and internal/external boundary conditions are derived through Hamilton’s principle and constitutive relations. Under quasi-static assumptions, the equations governing the longitudinal motion are transformed into functions of transverse displacements, which results in three integro-partial differential equations with coupling terms. These are solved using the direct multiple-scale method, leading to closed-form solutions for the mode functions, nonlinear natural frequencies and frequency–response curves of the system. The influence of system parameters on the linear and nonlinear natural frequencies, mode functions, and frequency–response curves is studied through numerical parametric analysis. It is shown that the vibration characteristics depend on the mid-plane stretching, intra-span spring, point mass, and temperature change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号