首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了有效回收内燃机的废热,基于超临界CO2(S-CO2)再压缩循环,提出了一种新型的S-CO2动力循环,并建立了相应的热力学模型,以分析系统的热力学性能,研究透平入口温度和系统压力对循环性能的影响。结果表明,在设计工况下,系统的净输出功为33.06 kW,热效率和效率分别可以达到35.86%和67.90%,余热回收率为58.70%。随着高压透平入口温度的升高,循环效率增加而净功减少。随着低压透平入口温度升高,循环效率和净功均增加。此外,存在再压缩机出口压力使净功和循环效率达到最大。  相似文献   

2.
目前,超临界二氧化碳(S-CO2)布雷顿循环普遍采用印刷电路板换热器(PCHE)来保证其相对其他能量转换循环的紧凑性优势。PCHE芯体为整体结构,若内部出现泄漏或结垢等问题,很难进行维护与检修。本文提出了一种微管壳式换热器(MSTE),其结构与传统管壳式换热器类似,但其管径缩小至微通道级。由于MSTE的流道横截面积占总截面积之比较PCHE大,在典型的回热器与冷却器设计工况下,相对PCHE而言,采用MSTE可将体积与质量均减小30%以上。灵敏性分析结果显示,采用本文设计的MSTE结构的回热器与冷却器,回热器冷热流道入口温度升高20℃左右,压缩机入口温度变化均不超过1℃,说明该种结构换热器的换热能力足够支撑能量转换循环的一般工况波动。  相似文献   

3.
预热型超临界二氧化碳(Supercritical CO2,简称S-CO2)布雷顿循环可进一步利用高温热源余热,在燃气轮机余热回收应用领域中具有较高的发展潜力。本文以存在有限温差传热、不可逆压缩、不可逆膨胀等不可逆因素的预热型S-CO2布雷顿循环为研究对象,考虑生态学函数为目标,首先分析了工质质量流率、压比、透平效率和压缩机效率的影响,然后在总热导率一定的条件下,以生态学函数最大目标分别对压比、质量流率、预热器、加热器、冷却器和回热器热导率分配比进行优化。结果表明:在质量流率较小时,可通过增大压比、分流系数、加热器热导率分配比的方式来提高生态学函数;在质量流率较大时,则需要适当减小压比、分流系数,增大预热器热导率分配比来提高生态学函数;经优化,循环生态学函数最大可提高150.98%。  相似文献   

4.
本文在深入分析燃煤电站CO2捕获和汽水系统热平衡的基础上,提出一种新型燃煤发电-CO2捕获-供热一体化系统。该系统通过汽水流程、碳捕获流程及地暖供热流程的有效集成,实现了系统中、低温余热的高效利用,降低了碳捕获对电厂效率的影响。分析结果显示,本文提出的一体化系统,在CO2回收率90%时,供电效率可达31.32%,供电效率降低8.96%,而传统化学吸收法碳捕获电站效率惩罚普遍在10~12个百分点或更高。同时,该系统可供热350 MW,全厂(火用)效率达34.49%,全厂热效率高达55.88%;该系统以较少的能耗代价实现高效供电、供热与CO2减排,为燃煤发电机组碳减排提供了独特的学术思路与技术方案。  相似文献   

5.
本文介绍了部分煤气化空气预热燃煤联合循环发电系统的工作原理,推导出热效率计算的表达式,井进行了比较全面的热力分析。  相似文献   

6.
钠离子电池层状氧化物正极材料具有高容量、易合成等优势,表现出巨大的应用潜力.为了开发出高容量、长循环的正极材料,本文提出对NaNi0.4Cu0.1Mn0.4Ti0.102 (NCMT)用Mg2+部分取代Ni2+的改性策略,设计并合成了高容量、长循环的NaNi0.35Mg0.05Cu0.1Mn0.4Ti0.102 (NCMT-Mg)正极材料.该材料在2.4—4.3 V电压范围内,显示165 mAh·g-1的高可逆比容量.在0.1 C的倍率下循环350周后,仍有111 mAh·g-1的可逆比容量,容量保持率为67.3%,相较于未掺杂的原始样品提升了约13%.本文对其进行了系统表征并揭示了其高电压循环稳定的机理,为开发出高性能钠离子正极材料提供了重要参考.  相似文献   

7.
压缩机是超临界二氧化碳(S-CO2)布雷顿循环的核心部件之一。本文以多级回热过程的热力学分析为基础,完善适用于S-CO2Brayton循环热力设计,为不同循环结构的压缩机选择等熵效率合理适用范围。通过对叶轮内部流场模拟,分析压缩机性能,发现本文设计的叶轮模型在转速60000 r/min时具有最高的等熵效率。存在一个最佳的进口温度和压力使叶轮内的低温低压区域最小。随着流量和转速的增加,相变或冷凝区域范围会进一步增加,为超临界二氧化碳离心压缩机内部流场数值模拟的准确性和S-CO2循环机组中压缩机的初步设计提供参考。  相似文献   

8.
SCO2循环的部件性能随系统负载降低会发生显著变化。因此,本文首先建立了10 MW输出功率的SCO2再压缩循环。然后分别在库存控制和涡轮旁通控制下研究了系统的非设计性能。结果表明,当系统负载减小到10%时,库存控制的热效率降至21.04%,再压气机趋向失速;涡轮旁通控制的热效率至13.56%,压气机发生堵塞。基于此,提出了库存–旁通混合控制策略。该混合策略的使用改善了两单一策略下的压气机运行状态,且系统性能介于两单一策略的之间。  相似文献   

9.
为实现煤炭高效清洁低碳发电,本文基于超临界水气化构建了采用H2O/CO2混合工质循环、朗肯循环复叠的发电系统,建立系统热力性能分析模型,其净发电效率和?效率分别为51.1%和49.9%,可实现CO2完全捕集和水的回收利用。分析了气化给水温度、水煤浆浓度对气化氧化单元以及系统不可逆性的影响规律,发现气化单元?效率随给水温度的升高而升高,气化氧化单元的?效率可提升至81%。当水煤浆浓度为19%时,系统净发电效率和?效率分别可达52.0%和50.7%。  相似文献   

10.
以超临界二氧化碳简单回热型布雷顿循环为研究对象,以核电站为应用背景,详细论述了系统循环模型与关键器部件的效率模型建立方法,并利用该模型初步分析了各类工程因素对布雷顿循环效率、系统体积的影响,分析结果表明,循环效率、系统体积对温度、压力、涡轮机械效率、回热器等参数的敏感性存在较大差异,其中增加透平入口温度对缩减系统总体积最为有效,需要建立完善的系统分析模型以进行S-CO2系统的优化设计。  相似文献   

11.
燃气发电是我国城市供电的主要形式之一,针对LNG接收站一体的电厂发电模式进行研究,提出一种新型燃气-蒸汽联合循环热电联供系统,利用超临界CO2布雷顿循环结合有机朗肯循环(ORC)辅助发电,将LNG作为冷源,对烟气余热进行三级利用。通过构建热力学和经济模型,以Aspen Plus软件模拟值为基础,结果表明:在消耗燃料1.704 kg/s(LNG)的条件下,联合循环净发电功率可达45 MW,供热量41.5 MW,余热利用率,热效率和?效率分别为88.50%,52.79%和46.69%。结合热-经济学与参数分析,利用Matlab优化后的最小单位发电成本为0.1529 CNY/kWh。考虑到碳排放价格,供电、供热、供气收益,燃料价格和设备成本,电厂每年的理想收益可达2989.5万元。  相似文献   

12.
本文对比了再压缩超临界CO2 (S-CO2)循环、蒸汽朗肯循环、He布雷顿循环分别应用于铅基堆的最优热学性能,明确了S-CO2循环与铅基堆结合较传统循环的热力学优势。为进一步提高再压缩S-CO2循环的效率,以跨临界CO2 (T-CO2)循环为底循环构建了再压缩S-CO2/T-CO2复合循环,探讨了不同顶循环透平入口温度、压力和压缩机入口温度条件下系统性能的变化规律,对比了S-CO2/T-CO2复合循环和S-CO2循环的热学性能。结果表明:铅基堆再压缩S-CO2循环发电系统较传统循环形式具有更高的热效率;构建的S-CO2/T-CO2复合循环能够有效提高S-CO2循环的效率,在所研究参数范围内,S-CO2/T-CO2复合循环的热效率和效率比S-CO2循环分别最大可提高约4.8%和8.3%;再压缩S-CO2循环和S-CO2/T-CO2复合循环热学性能随顶循环关键参数变化规律具有一致性。  相似文献   

13.
为探究ORC系统循环参数对系统性能的影响,以R123为工作流体,在热力学分析的基础上对微型ORC系统建立数学模型,探究工质质量流量、冷却水流量以及热源温度对ORC系统性能特征的影响,结果表明三者的增加均能提升系统循环净功、循环热效率、发电功率以及发电效率,从而有助于提高系统的热力性能,系统循环净功与发电功率最大值分别为0.558 kW、0.167 kW;系统所达到最大热效率和最大发电效率分别为8.96%和2.61%。  相似文献   

14.
提出一种带吸收器的混合工质低温动力循环,LNG和海水分别为冷源和热源。以单位LNG输出功和可用能利用率为性能参数对循环进行计算,并对采用四氟甲烷(CF4)/丙烷(C3H8)和乙烯(C2H4)/丙烷(C3H8)新型混合工质循环与常规丙烷朗肯循环(ORC)进行比较。结果表明,本循环明显优于常规丙烷朗肯循环,单位输出功和最大可用能利用率分别比朗肯循环提高了66.3%和79.6%,最佳LNG利用温度分别为-59.6℃和-54.6℃。  相似文献   

15.
基于CaO/CaCO3循环的钙基热化学储能体系在循环过程中由于CaO晶粒的烧结导致储能性能下降严重。本文基于改进的溶胶凝胶法制备了复合改性钙基材料,以MgCl2为主要掺杂剂,并结合钛酸四丁酯或Al(NO3)3共同作用提高材料在100次循环中的稳定性。复合改性材料在100次循环中的平均转化率为0.634,对应平均储能密度高达1132 k J·kg-1。此外,DFT计算表明,掺杂相与CaO的键合力强于CaO本身的键合力,抑制CaO原子扩散进而发挥抗烧结作用,且复合材料对CO2的吸收能力也有所提高。  相似文献   

16.
电解质为电致变色器件的变色提供离子,是器件中不可缺少的一部分。然而,目前对电解质层的研究主要集中在复合电解质和极限浓度,少有探究电解质浓度对电致变色性能的影响规律和机理,尤其是循环稳定性。因此,本文系统研究了高氯酸锂(Li Cl O4)电解质浓度(0.1、0.5、1.0、2.0 mol/L)对氧化钨(WO3)薄膜循环前后电致变色性能的影响,及对其循环稳定性的作用机理。结果表明,当Li Cl O4浓度为1.0 mol/L时,WO3薄膜表现出最短的着色/褪色时间,初始电荷储存量高达25.2 m C·cm-2,6000圈伏安(CV)循环后,衰退率仅为25.4%,表现出最佳的循环稳定性。该研究详细介绍了电解质浓度对WO3薄膜电致变色性能及其循环稳定性的影响规律及作用机理,对WO3基电致变色器件的设计和制备具有重要的指导意义。  相似文献   

17.
选取了R290(丙烷)、R1270(丙烯)、R134a(四氟乙烷)和R717(氨)四种循环工质,分析四种不同工质在蒸发温度、冷凝温度下对发电系统热效率及火用效率的影响关系。从热物性方面综合考虑,证明了丙烷应用于LNG冷能海水朗肯循环发电系统的可行性。  相似文献   

18.
本文基于300 MW燃煤电厂的设计参数,针对四种典型燃煤电厂碳减排系统进行了发电量和碳减排量的比较。同时,从经济性角度分析且比较了四种燃煤电厂碳减排系统的均化发电成本(LCOE)和碳移除成本(COR)。结果显示在碳捕集率为50%条件下,当碳捕集设备的价格降低到原价的70%且有机朗肯循环(ORC)设备价格低于5065 CNY/kW时,太阳能ORC辅助碳减排的发电成本比太阳能直接辅助碳捕集系统低,此时太阳能ORC辅助系统在经济性上具备竞争力。  相似文献   

19.
本文提出了一种OTEC(OTEC,Ocean Thermal Energy Conversion)增温再热朗肯动力循环,通过第二类吸收式热泵提升热源品质,在热力循环中创造一个相对高温区,与表层温海水共同对朗肯循环的湿工质进行过热,保证了透平出口干度,提升了循环的平均吸热温度,实现了单一热源下的梯级加热和能级匹配,系统效率得到较大的提升。论文构建了OTEC增温再热朗肯动力循环热力学模型,对比了增温再热朗肯动力循环与传统循环的热力性能,并分析了热泵子循环的最佳增温温度。结果表明:增温再热的效果与OTEC循环工质有较大关联,且存在最佳增温温度;对于采用R134A等近似等熵工质的OTEC循环,增温再热的热力性能提升不明显;而对于CO2等工作在亚临界区间的工质而言,增温再热可使热效率提升19.63%41.71%;对于NH3等过热需求较大工质而言,增温再热具有显著的提升效果;其中NH3工质的提升幅度最高,最佳增温温度为42.5°C,OTEC循环热效率可由2.34%提升至4.25%,升幅达84.45%。  相似文献   

20.
利用分子动力学(MD)模拟方法研究整体煤气化联合循环(IGCC)合成气(CO2/H2)水合物法分离CO2的分离机理,系统研究了CO2水合物、H2水合物以及合成气水合物法一级分离所得CO2/H2混合气体水合物的微观结构及性质.模拟分析n个CO2或H2与水合物笼状结构的整体结合能ΔE关键词: 水合物法分离 分子动力学模拟 整体煤气化联合循环合成气 2分离')" href="#">CO2分离  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号