首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了有效回收内燃机的废热,基于超临界CO2(S-CO2)再压缩循环,提出了一种新型的S-CO2动力循环,并建立了相应的热力学模型,以分析系统的热力学性能,研究透平入口温度和系统压力对循环性能的影响。结果表明,在设计工况下,系统的净输出功为33.06 kW,热效率和效率分别可以达到35.86%和67.90%,余热回收率为58.70%。随着高压透平入口温度的升高,循环效率增加而净功减少。随着低压透平入口温度升高,循环效率和净功均增加。此外,存在再压缩机出口压力使净功和循环效率达到最大。  相似文献   

2.
在热输入功率50 kW的循环流化床O2/CO2燃烧试验装置上研究燃煤SO2排放特性及石灰石脱硫机理。结果发现,未添加石灰石时,O2/CO2气氛下SO2排放量比相同O2浓度的空气气氛下低;随着O2浓度的升高,排放量升高。相同钙硫摩尔比下,O2/CO2气氛下石灰石的脱硫机理以直接脱硫为主,脱硫效率比空气气氛下高;随着O2浓度的增加,石灰石脱硫效率提高。  相似文献   

3.
基于品位匹配和多能源综合梯级利用的原则,本文提出了低CO2排放的太阳能与化石能源互补发电系统LESOLCC,并对其进行了热力经济性能分析。所提系统以甲醇为燃料,中低温太阳能首先提供甲醇重整反应的反应热,从而转化为富氢合成气的化学能,实现品位提升;其次通过燃烧前对CO2的捕集,实现燃料的清洁燃烧,最终在高效联合循环中实现其热功转换。结果表明:基本工况下,系统当量效率达到55.1%,比投资为833$/kW,发电成本为0.124$/kWh,回收期17年;与相同化石燃料输入及CO2捕集水平的尾气捕集CO2的常规燃气-蒸汽联合循环(CC-Post)相比,发电成本下降了10.1%,充分显示其优越性。  相似文献   

4.
为揭示O2/CO2燃烧过程中高浓度的CO对煤焦异相还原NO的影响,在1073 K温度下使用山西褐煤在卧式炉上进行了实验。分别对O2/CO2浓度比及CO浓度下NO的还原特性进行详细实验研究。研究结果表明:在O2/CO2气氛下,O2浓度为30%时具有较高的还原率;相同O2浓度下O2/CO2气氛较空气气氛NO还原率高,表明在CO存在的条件下,高浓度的CO2会促进NO的还原;当CO浓度从1.5%逐渐升高时,NO的还原率逐渐降低,到CO浓度为5%时,NO还原率比没有加入CO时还要低,而在空气气氛下CO浓度的变化对NO的还原率影响较小。  相似文献   

5.
制冷系统在冰场建筑节能与环保方面有着巨大的潜力。以哈尔滨、北京和广州三城市为例,从热力学性能、运行能耗、经济性以及碳排放四个方面对采用CO2和NH3两种自然工质的冰场制冷系统性能进行了分析。结果表明:当室外温度在5℃以下时,CO2制冷系统的COP高于NH3制冷系统,双级CO2系统相对NH3-CO2系统和NH3-CaCl2系统分别提高12%和25.1%;当室外温度在5—20℃时,CO2系统和NH3系统COP相接近;当室外温度高于20℃时,CO2系统COP相对NH3系统低46%左右。相对CaCl2作为载冷剂,CO2作为载冷剂可减少90%以上的载冷剂泵功。在三个城市的气候条件下,NH3-CaCl2系统的初投资最低,NH  相似文献   

6.
IGCC电站的过程模拟和性能分析   总被引:1,自引:0,他引:1  
整体煤气化联合循环(IGCC)系统是一种先进的高效、清洁、具有燃烧前碳捕捉功能的能源利用和转化系统。本文利用流程模拟软件Aspen Plus对基于干煤粉气化技术的IGCC电站(电功率250MWe)进行模拟,并针对其中的Shell气化炉、常温湿法煤气净化系统、燃烧前CO2捕捉系统等进行性能分析。通过灵敏度分析发现氧煤比是Shell气化炉性能的最重要影响因素,气化炉优化参数为:气化温度1450~1500℃(热损失为2%),气化压力4 MPa,氧煤比0.72,蒸汽煤比0.08,氧气纯度99.5%;煤气净化系统的热煤气效率可达94.48%,可凹收显热52.7MW;M702F燃气轮机净输出功222.9MW;三压再热式余热锅炉净输出功70.6MW;以神华煤为燃料时,不考虑碳捕捉的IGCC电站的能量转换效率可达到46.37%,而考虑碳捕捉功能的IGCC电站的效率下降为35.63%(降低10.74%)。  相似文献   

7.
本研究以煤基活性炭产品为原料,尿素作为氮源,通过浸渍、高温活化的方法进行改性,开发了一款可用于煤制氢/重整制氢中温变换气中CO2脱除的煤基富氮活性炭,并对其进行结构及性能表征。其中性能最优样品U-80C-N-550,其表面氮含量为9.92%,N/O比1.22,水接触角为137.92°±1.24°。在测试条件为99.99%CO2气氛,200?C温度,1 MPa压力下,CO2吸附容量可以达到1.27 mmol/g,且在进行40次吸附解吸循环过程中CO2吸附量基本保持不变,循环稳定性好。结果表明,不同条件下制备的富氮活性炭样品表面含氮基团含量及种类不同,因此通过改变吸附剂制备工艺条件,可适当调控活性炭表面含氮基团的种类及含量,从而提高其CO2吸附性能的同时增强其疏水性,得到了适合于含水蒸气富氢气体中脱除CO2的吸附剂。  相似文献   

8.
燃气发电是我国城市供电的主要形式之一,针对LNG接收站一体的电厂发电模式进行研究,提出一种新型燃气-蒸汽联合循环热电联供系统,利用超临界CO2布雷顿循环结合有机朗肯循环(ORC)辅助发电,将LNG作为冷源,对烟气余热进行三级利用。通过构建热力学和经济模型,以Aspen Plus软件模拟值为基础,结果表明:在消耗燃料1.704 kg/s(LNG)的条件下,联合循环净发电功率可达45 MW,供热量41.5 MW,余热利用率,热效率和?效率分别为88.50%,52.79%和46.69%。结合热-经济学与参数分析,利用Matlab优化后的最小单位发电成本为0.1529 CNY/kWh。考虑到碳排放价格,供电、供热、供气收益,燃料价格和设备成本,电厂每年的理想收益可达2989.5万元。  相似文献   

9.
对于S-CO2燃煤发电系统,系统复杂难以横向比较,拆分法通过对循环流量分配,能够梳理循环回热过程并进行循环间的比较,应用循环拆分法有助于对复杂燃煤发电系统的性能进行分析。本文以再压缩循环(RC)为例,构建了集成冷却器热量回收(CHR)和烟气冷却器法(FGC)的S-CO2燃煤发电系统(RC+LFGC+CHR),论证了拆分法在分析燃煤发电系统中的优势。当主气参数为620?C/28 MPa时,应用拆分法分析,RC+FGC+CHR可等效为在热效率49.21%的RC基础上,叠加热效率为57.49%的子循环(SSC+LFGC+CHR),故RC+FGC+CHR效率(49.80%)高于RC(49.21%)。  相似文献   

10.
固体氧化物燃料电池是将化学能转化成电能的全固态能量转换装置,被认为是极具前景的绿色发电系统。本研究提出了结合碳捕集的固体氧化物燃料电池-超临界二氧化碳布雷顿循环集成系统,通过阳极尾气富氧燃烧实现低能耗碳捕集,并利用s CO2再压缩布雷顿循环回收燃烧室余热提高系统效率。模拟结果显示,该集成系统在设计工况下的净发电效率为59.74%,二氧化碳捕集量为134.50 kg/h。此外,关键工作参数对系统性能的影响分析结果表明,合理的阳极尾气再循环比、燃料利用率和燃料流量是确保系统安全高效运行的必要前提。  相似文献   

11.
本文在深入分析燃煤电站CO2捕获和汽水系统热平衡的基础上,提出一种新型燃煤发电-CO2捕获-供热一体化系统。该系统通过汽水流程、碳捕获流程及地暖供热流程的有效集成,实现了系统中、低温余热的高效利用,降低了碳捕获对电厂效率的影响。分析结果显示,本文提出的一体化系统,在CO2回收率90%时,供电效率可达31.32%,供电效率降低8.96%,而传统化学吸收法碳捕获电站效率惩罚普遍在10~12个百分点或更高。同时,该系统可供热350 MW,全厂(火用)效率达34.49%,全厂热效率高达55.88%;该系统以较少的能耗代价实现高效供电、供热与CO2减排,为燃煤发电机组碳减排提供了独特的学术思路与技术方案。  相似文献   

12.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

13.
为了研究跨临界CO2热泵空调系统在不同工况下的制热性能,应用MATLAB软件,对带回热器的跨临界CO2系统进行仿真研究。针对系统内排气压力Pcond、蒸发温度Tevp、气冷器排气温度Tout、过热度ΔT等因素,探究其对系统制热COP的影响。研究结果表明:Tevp、ΔT每升高1℃,系统COP分别上升5%~7%、0.1%~1.3%;Tout每增加1℃,系统COP降低0.17~0.04。通过仿真研究得出,跨临界CO2系统的最优排气压力Pcond_opt,并拟合得到其计算关联式。  相似文献   

14.
采用SST k-w湍流模型对超临界CO2/丙烷混合工质水平管内的传热特性进行数值模拟研究。管径d=4 mm,加热段L2=800 mm;混合工质浓度配比为100/0、95/5、90/10、85/15、80/20、75/25;质量流速为150~250 kg·m?2·s?1;热流密度为30~40 kW·m?2,入口温度293 K,入口压力7.5~30 MPa。随着丙烷浓度的增加,CO2/丙烷二元混合工质的临界压力降低,临界温度升高,丙烷浓度从5%增加到25%,换热系数峰值降低6.19%~31.45%,但增加丙烷浓度可提高拟临界温度后的换热效果。P=7.5~8.5 MPa,换热系数有明显峰值;P=20~30 MPa,换热系数变化规律无明显峰值,并随压力的升高而减小。混合工质的换热系数随质量流速的增大而增大。同一流体温度所对应的换热系数,随着热流密度的增加而减小。  相似文献   

15.
基于煤炭分级转化、成分对口应用、污染物控制一体化等系统集成思路,提出了一种捕获CO2的部分煤气化氢电联产系统。该系统利用增压流化床完成煤炭部分气化,降低了气化难度与气化炉造价,具有较好经济性;全面揭示了系统的热力和环境特性规律,指出气化炉碳转化率是影响系统热力性能的主要因素;系统具有良好的热力特性与环境特性,当CO2的分离率为59.7%时,系统(火用)效率为54.3%。本文的研究为煤炭的清洁高效利用提供了可选择的途径。  相似文献   

16.
可调谐二极管激光吸收光谱(TDLAS)技术测量CO2浓度时,由于测量氛围温度变化的影响引起气体吸收谱线的线强和线型发生变化,最终导致浓度测量存在较大误差。为了克服温度变化对浓度测量的影响,选用中心波长在1 580 nm的DFB激光器,基于直接吸收法,模拟电厂尾部烟道内的高浓度二氧化碳气体环境,研究了在常温(298 K)和变温(298~338 K、间隔10 K)不同温度工况下CO2浓度的测量。结果显示,常温浓度测量的最大相对误差为-5.26%,最小相对误差为1.25%,相对误差均方值为3.39%,验证了TDLAS测量系统在常温下有着良好的测量精度和稳定性,但其在变温测量时浓度测量结果误差较大,其最大相对误差已经超过25%。为了修正温度变化对浓度测量结果的影响,适应工业测量的需要,在变温测量基础上利用最小二乘法拟合出测量系统在不同温度下的浓度与气体吸收的修正关系式。经过修正后,CO2浓度测量的相对误差降到5%以下,相对误差均方值降到3.5%以下。修正结果表明,所提出的修正方法可以有效抑制温度变化对浓度测量结果的影响,显著提高了测量系统在变温环境下的测量精度和稳定性,为TDLAS系统测量CO2浓度的现场应用提供了理论支持和技术保障。  相似文献   

17.
为研究亚临界CO2冷库制冷系统性能,建立制冷系统压缩机数学模型,分析压缩机吸气温度对输气量、容积效率等性能参数的影响。搭建亚临界CO2冷库制冷系统试验台,分析储液器出口气、液质量比对系统性能的影响。结果表明,当吸气压力恒定时,吸气温度升高,压缩机实际输气量及容积效率均有小幅度提升。随着储液器出口气、液质量比增大,系统制冷量及压缩机功耗均升高,而系统COP呈先增大后减小的趋势。在气、液质量比为0.16时,COP达到最大值为1.95。  相似文献   

18.
采用沉降炉快速热解和管式炉慢速热解的方法制得两种煤焦,通过环境扫描电镜(ESEM)和X射线衍射仪(XRD)分别观察煤焦的形貌结构和测量煤焦的晶体化程度。使用热重在不同的CO2和H2O浓度的气氛条件下研究在CO2浓度和H2O浓度变化时热解条件对煤焦-CO2和煤焦-H2O气化的影响。结果显示对于实验用褐煤,快速热解和慢速热解条件生成的煤焦均以密实型结构焦为主。快速热解和慢速热解条件生成的煤焦的煤焦-CO2和煤焦-H2O气化过程均可以通过收缩核模型很好地拟合。煤焦-H2O反应和煤焦-CO2反应的反应位并不相同。  相似文献   

19.
利用分子动力学(MD)模拟方法研究整体煤气化联合循环(IGCC)合成气(CO2/H2)水合物法分离CO2的分离机理,系统研究了CO2水合物、H2水合物以及合成气水合物法一级分离所得CO2/H2混合气体水合物的微观结构及性质.模拟分析n个CO2或H2与水合物笼状结构的整体结合能ΔE关键词: 水合物法分离 分子动力学模拟 整体煤气化联合循环合成气 2分离')" href="#">CO2分离  相似文献   

20.
建立了一维滑动弧裂解CO2的反应机理模型. 利用对流冷却的特征频率计算横向气流对流引起的等离子体组分损失. 将等离子体密度和温度的数值模拟结果与文献中滑动电弧等离子体反应器的实验数据进行了对比,吻合较好. 模拟结果表明,滑动弧裂解CO2会产生大量O和O2等活性助燃粒子以及可燃的CO. 随着对流冷却特征频率的增加,放电过程中最大电子数密度和电子温度减小,CO2转化率下降. 在整个CO2裂解机制中e+CO2→e+CO+O的贡献最大,准稳态中贡献率为90.63%,瞬态中贡献率为98.43%. 反应CO+O+M→CO2+M对CO2生成的贡献率最大. 在实际应用中,为提高CO2转化率,可以通过增大放电电流,增大e+CO2→e+CO+O的反应速率,同时选择合适的气体流量,避免过大的速度引起CO2转化率下降.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号