首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
In large magnetoresistance devices spin torque-induced changes in resistance can produce GHz current and voltage oscillations which can affect magnetization reversal. In addition, capacitive shunting in large resistance devices can further reduce the current, adversely affecting spin torque switching. Here, we simultaneously solve the Landau-Lifshitz-Gilbert equation with spin torque and the transmission line telegrapher's equations to study the effects of resistance feedback and capacitance on magnetization reversal of both spin valves and magnetic tunnel junctions. While for spin valves parallel (P) to anti-parallel (AP) switching is adversely affected by the resistance feedback due to saturation of the spin torque, in low resistance magnetic tunnel junctions P-AP switching is enhanced. We study the effect of resistance feedback on the switching time of magnetic tunnel junctions, and show that magnetization switching is only affected by capacitive shunting in the pF range.  相似文献   

2.
Based on both the spin diffusion equation and the Landau-LlTshitz-Gilbert (LLG) equation, we demonstrate the influence of out-of-plane spin torque on magnetization switching and susceptibility in a magnetic multilayer system. The variation of spin accumulation and local magnetization with respect to time are studied in the magnetization reversal induced by spin torque. We also research the susceptibility subject to a microwave magnetic field, which is compared with the results obtained without out-of-plane torque.  相似文献   

3.
We have performed nonlocal spin injection into a nanoscale ferromagnetic particle configured in a lateral spin-valve structure to switch its magnetization only by spin current. The nonlocal spin injection aligns the magnetization of the particle parallel to the magnetization of the spin injector. The spin current responsible for switching is estimated from the experiment to be about 200 microA, which is reasonable compared with the values obtained for conventional pillar structures. Interestingly, the switching always occurs from antiparallel to parallel in the particle-injector magnetic configurations, where no opposite switching is observed. Possible reasons for this discrepancy are discussed.  相似文献   

4.
Spin torque transfer structures with new spin switching configurations are proposed, fabricated and investigated in this paper. The non-uniform current-induced magnetization switching is implemented based on both GMR and MTJ nano devices. The proposed new spin transfer structure has a hybrid free layer that consists of a layer with conductive channels (magnetic) and non-conductive matrix (non-magnetic) and traditional free layer(s). Two mechanisms, a higher local current density by nano-current-channels and a non-uniform magnetization switching (reversal domain nucleation and growth) by a magnetic nanocomposite structure, contribute in reducing the switching current density. The critical switching current density for the new spin transfer structure is reduced to one third of the typical value for the normal structure. It can be expected to have one order of magnitude or more reduction for the critical current density if the optimization of materials and fabrication processes could be done further. Meanwhile, the thermal stability of this new spin transfer structure is not degraded, which may solve the long-standing scaling problem for magnetic random access memory (MRAM). This spin transfer structure, with the proposed and demonstrated new spin switching configurations, not only provides a solid approach for the practical application of spin transfer devices but also forms a unique platform for researchers to explore the non-uniform current-induced switching process.  相似文献   

5.
To clarify the contributions of spin-polarized current and spin accumulation to the current-induced magnetization switching, the effects of the top electrode size of the magnetic nanopillar are investigated both theoretically and experimentally. Theoretical calculation demonstrates that the spin-polarized current and the spin accumulation can be adjusted in opposite directions by modifying the size of the top electrode. Increase in the size of the top electrode suppresses the spin accumulation but enhances the spin-polarized current inside the nanopillar. On the other hand, it is shown experimentally that the nanopillar with a wide top electrode exhibits small critical switching current compared to the nanopillar with a narrow top electrode. The results suggest that the spin-polarized current contributes to the current-induced magnetization switching dominantly over the spin accumulation.  相似文献   

6.
We demonstrate a quasiballistic switching of the magnetization in a microscopic magnetoresistive memory cell. By means of time resolved magnetotransport, we follow the large angle precession of the free layer magnetization of a spin valve cell upon application of transverse magnetic field pulses. Stopping the field pulse after a 180 degrees precession rotation leads to magnetization reversal with reversal times as short as 165 ps. This switching mode represents the fundamental ultrafast limit of field induced magnetization reversal.  相似文献   

7.
The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes.  相似文献   

8.
We investigate the dependence of the switching process on the perpendicular magnetic anisotropy(PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions(P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.  相似文献   

9.
Spin wave equations describing the nonequilibrium precessional state of a ferromagnetic system are given. The equations reveal a new type of spin wave instability (SWI) towards growing domains of uniform magnetization. In the developed stages of SWI a nonstationary picture of domain chaos is revealed by numerical simulations. SWI is capable of explaining recent experimental observation of stochastic switching in precessional magnetization reversal.  相似文献   

10.
王日兴  叶华  王丽娟  敖章洪 《物理学报》2017,66(12):127201-127201
在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.  相似文献   

11.
A novel theoretical approach to magnetization dynamics driven by spin-polarized currents is presented. Complete stability diagrams are obtained for the case where spin torques and external magnetic fields are simultaneously present. Quantitative predictions are made for the critical currents and fields inducing magnetization switching, for the amplitude and frequency of magnetization self-oscillations, and for the conditions leading to hysteretic transitions between self-oscillations and stationary states.  相似文献   

12.
李成  蔡理  王森  刘保军  崔焕卿  危波 《物理学报》2017,66(20):208501-208501
由于石墨烯的电导率相比典型的金属材料更大,自旋弛豫时间更长,自旋轨道相互作用更弱,从而在相同的注入电流情况下,自旋电流在石墨烯材料中的耗散作用更弱.基于自旋传输和磁化动力学耦合模型,研究了石墨烯沟道全自旋逻辑器件的开关特性.结果显示,在相同的电源电压下和器件尺寸下,石墨烯沟道材料的全自旋逻辑器件磁矩翻转时间比Cu沟道更短,流入输出纳磁体的自旋电流更大.同时,长度越短、宽度越窄的沟道其开关时间更短,功耗更小.在满足磁体磁矩翻转的临界开关电流的情况下,石墨烯沟道的可靠工作长度也显著大于Cu沟道.所以石墨烯材料是相比于金属材料更理想的沟道材料.另外,通过合理选择沟道尺寸,能进一步降低器件开关时间和功耗.上述结论为全自旋逻辑器件的优化设计与应用提供了理论参考.  相似文献   

13.
《Current Applied Physics》2020,20(4):477-483
A systematic study of the magnetization reversal behavior in the regular arrangement of L10-FePt based exchange-spring nanomagnets with different thicknesses of the Co soft magnetic layer is presented. The magnetic property of the hard magnet is compared to two tuned exchange-spring magnets: its systems of 20 nm L10-FePt/3 nm, and 7 nm Co. In particular, we focus on the switching field distribution. The exchange coupling showed narrower SFD, in spite of the decoupled part switches earlier. The magnetization switching mechanism of exchange-spring nanomagnets patterns has been revealed with a first-order reversal curves technique and the switching field distribution. Further, the microscopic results using magnetic force microscopy show that the spin rotation of the non-interacting part in the thicker soft layered exchange-spring magnet. The part influences the magnetization reversal process. According to the experimental results, exchange coupling strength can be tuned by the thickness of the soft magnetic layer.  相似文献   

14.
A single crystal of gadolinium-doped SmAl(2) has zero magnetization in the midst of the ordered temperature region, despite the probable ferromagnetic spin ordering. The asymmetry in Compton-scattering intensity when switching between right- and left-handed polarization of incident 150-keV synchrotron radiation provides decisive proof that ferromagnetic order is really there, and that spin and orbital magnetic contributions cancel. The experiments also show that the spin direction at this zero-magnetization state is rather stable against the external magnetic field and, nevertheless, reversible by a preceding control of temperature and an external field.  相似文献   

15.
任敏  张磊  胡九宁  邓宁  陈培毅 《物理学报》2007,56(5):2863-2867
提出了一个基于磁动力学方程的宏观唯象理论模型,对纳米级赝自旋阀结构的电流感应磁化翻转效应给出了明晰的物理解释:流入自由层的净自旋流和自由层内的自旋弛豫过程的共同作用,导致自由层总磁矩随时间的改变,甚至产生磁化方向的翻转.模型将“铁磁/非铁磁”界面的自旋相关散射,以及铁磁层中的自旋积累和弛豫过程,统一于宏观的磁动力学方程中.通过求解该方程的解析解,给出了赝自旋阀在电流激励下的磁化翻转条件和临界电流密度的表达式.对该效应的定性解释和数值模拟结果都和实验报道良好符合.根据模型分析了影响临界电流密度的诸因素,并指出提高器件性能的途径. 关键词: 电流感应磁化翻转 磁动力学方程 自旋电子学  相似文献   

16.
We study analytically the precessional switching of the magnetization of a thin macrospin. We analyze its response when subjected to an external field along its in-plane hard axis. We derive the exact trajectories of the magnetization. The switching versus non switching behavior is delimited by a bifurcation trajectory, for applied fields equal to half of the effective anisotropy field. A magnetization going through this bifurcation trajectory passes exactly along the hard axis and exhibits a vanishing characteristic frequency at that unstable point, which makes the trajectory noise sensitive. Attempting to approach the related minimal cost in applied field makes the magnetization final state unpredictable. We add finite damping in the model as a perturbative, energy dissipation factor. For a large applied field, the system switches several times back and forth. Several trajectories can be gone through before the system has dissipated enough energy to converge to one attracting equilibrium state. For some moderate fields, the system switches only once by a relaxation dominated precessional switching. We show that the associated switching field increases linearly with the damping parameter. The slope scales with the square root of the effective anisotropy. Our simple concluding expressions are useful to assess the potential application of precessional switching in magnetic random access memories.Received: 2 October 2003, Published online: 19 November 2003PACS: 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) - 75.60.Jk Magnetization reversal mechanisms - 75.75. + a Magnetic properties of nanostructures  相似文献   

17.
Detection of current-induced spin accumulation via ferromagnetic contacts is discussed. Onsager's relations forbid that in a two-probe configuration, spins excited by currents in time-reversal symmetric systems can be detected by switching the magnetization of a ferromangetic detector contact. Nevertheless, current-induced spins can be transferred as a torque to a contact magnetization and can affect the charge currents in many-terminal configurations. We demonstrate the general concepts by solving the microscopic transport equations for the diffuse Rashba system with magnetic contacts.  相似文献   

18.
Effective probing current-induced magnetization switching is highly required in the study of emerging spin-orbit torque(SOT)effect.However,the measurement of in-plane magnetization switching typically relies on the giant/tunneling magnetoresistance measurement in a spin valve structure calling for complicated fabrication process,or the non-electric approach of Kerr imaging technique.Here,we present a reliable and convenient method to electrically probe the SOT-induced in-plane magnetization switching in a simple Hall bar device through analyzing the MR signal modified by a magnetic field.In this case,the symmetry of MR is broken,resulting in a resistance difference for opposite magnetization orientations.Moreover,the feasibility of our method is widely evidenced in heavy metal/ferromagnet(Pt/Ni20Fe80 and W/Co20Fe60B20)and the topological insulator/ferromagnet(Bi2Se3/Ni20Fe80).Our work simplifies the characterization process of the in-plane magnetization switching,which can promote the development of SOT-based devices.  相似文献   

19.
The thermal switching behavior of individual perpendicularly magnetized nanoscale Fe islands consisting of 200-600 atoms only is studied by low-temperature spin-polarized scanning tunneling microscopy. Our results reveal that the switching rate is strongly affected by the particle shape; i.e., elongated islands switch much more rapidly than compact islands of the same volume. This observation is explained by different processes of magnetization reversal. Our results suggest that compact magnetic particles are an ideal choice for future perpendicular magnetic recording media because they are robust against thermal magnetization reversal.  相似文献   

20.
张磊  胡九宁  任敏  董浩  邓宁  陈培毅 《物理学报》2009,58(1):488-493
运用宏观双通道扩散模型研究了赝自旋阀结构中的自旋相关输运过程,考虑到磁化强度矢量的横向分量的影响,建立了自由层磁化强度矢量的动力学方程,利用自旋流连续和化学势差连续作为边界条件.理论计算求解了电流感应磁化翻转效应中的临界电流,解释了铁磁层和非磁层电导率匹配问题和纵向场对电流感应磁化翻转效应中临界电流的影响. 关键词: 赝自旋阀 电导率匹配 自旋转移扭矩 电流感应磁化翻转效应  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号