首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以传统Ziegler-Natta催化体系TiCl4/Al(#em/em#-Bu)3催化降冰片烯(NBE)和异戊二烯(IP)的共聚合, 制得可溶于常规有机溶剂的共聚物, 其数均分子量为2.0 × 104~6.5 × 104, 分子量分布指数为1.5~2.9, 降冰片烯结构摩尔含量为26%~60%. 考察了助催化剂用量、 聚合温度及2种单体投料比对共聚合的影响. 结果表明, 当降冰片烯与异戊二烯的投料摩尔比为4∶6时, 于40 ℃聚合6 h, 得到的共聚物产率为96%, 数均分子量为6.5×104, 降冰片烯结构含量45%. 用 1H NMR, 13CNMR, GPC和DSC等方法表征了共聚产物的微观结构与热性能. 13C NMR DEPT结果表明, 共聚反应中降冰片烯单体以加成方式聚合. DSC结果显示, 共聚物只有一个玻璃化转变温度(Tg=20~40 ℃). 通过Kelen-Tüdös方法得到2种单体的竞聚率分别为rNBE=0.07, rIP=0.44.  相似文献   

2.
降冰片烯开环易位聚合反应的分子量及分子量分布控制   总被引:1,自引:0,他引:1  
使用Grubbs催化剂催化降冰片烯单体进行开环易位聚合反应, 研究了催化剂搅拌溶解时间、聚合反应的溶剂极性和三苯基膦的加入等反应条件对降冰片烯单体ROMP反应分子量及分子量分布的影响, 从而得到降冰片烯ROMP反应的最佳条件.  相似文献   

3.
综述了后过渡金属催化剂催化降冰片烯加成聚合的研究进展。主要介绍了Ni、Pd、Co三种金属催化剂各自的结构以及其催化降冰片烯聚合的特点,同时也阐述了Ni、Pd催化剂催化降冰片烯聚合的机理。  相似文献   

4.
双吡唑亚胺镍/甲基铝氧烷催化降冰片烯的聚合   总被引:1,自引:1,他引:0  
合成了两种双吡唑亚胺镍配合物: 双-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.1)和双-4-甲氧基-N-(苯基-1-3,5-二甲基吡唑基亚甲基)苯基亚胺二溴化镍(Cat.2). 研究了Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯(NBE)单体聚合的催化性能, 考察了各种聚合条件, 如温度、Al/Ni摩尔比及催化剂浓度对降冰片烯的催化效率、单体转化率、聚合物分子量及分子量分布的影响. 研究结果表明, Cat.1/MAO和Cat.2/MAO催化体系对降冰片烯聚合具有较高的催化效率, 可达到105 g PNBE/(mol Ni)数量级, 所得聚降冰片烯(PNBE)的重均分子量在105以上, 分子量分布指数在2左右. 聚合产物的1H NMR和FTIR谱分析结果表明, 该聚合反应是以单体的乙烯基加成聚合机理进行的.  相似文献   

5.
双膦胺镍/甲基铝氧烷催化降冰片烯聚合研究   总被引:3,自引:0,他引:3  
合成了一种双膦胺镍配合物N,N-双(二苯膦基)-对甲氧基苯胺二氯化镍(PNP-Ni),研究了PNP-Ni/甲基铝氧烷(MAO)体系使降冰片烯(NBE)单体按乙烯基加成聚合的催化性能,考察了各种聚合条件如温度、Al/Ni比及催化剂浓度对催化效率、单体转化率、聚合物分子量及分子量分布的影响.结果表明,该催化体系具有较高的催化效率,可达到105g PNBE/(mol Ni)数量级,所得可溶性聚合产物聚降冰片烯(PNBE)重均分子量可高达1×106以上,分子量分布窄(Mw/Mn<2).该PNBE具有很好耐热性能,其玻璃化转变温度Tg高于300℃.通过对聚合产物1H和13C-NMR分析表明,该聚合反应是单体按乙烯基配位聚合机理进行的,聚合产物PNBE的3种立体构型含量分别为[mm]=53%,[mr]=39%,[rr]=8%.  相似文献   

6.
钌催化降冰片烯开环移位聚合的研究   总被引:1,自引:0,他引:1  
钱延龙  陈斌  金军挺  黄吉玲 《化学学报》2000,58(8):1050-1052
CpRuCl(PPh~3)~2/O~2和CH~3OCH~2CH~2CpRuCl(PPh~3)~2/O~2体系对降冰片(NBE)开环移位聚合(ROMP)有活性,降冰片烯的转化率和聚降冰片烯主链双键顺反比与气氛催化剂摩尔比及催化剂本身性质有关。在实验的基础上提出了钌催化降冰片烯开环移位聚合的可能机理。  相似文献   

7.
本文设计合成了卟啉的降冰片烯单体,采用Grubbs催化剂与长链烷基的降冰片烯单体开环易位聚合,直接得到了卟啉降冰片烯聚合物,通过紫外-可见吸收光谱、荧光光谱、电化学等手段研究了卟啉降冰片烯聚合物的性质,与小分子单体相比,所得卟啉高分子共聚物相当好地保持了卟啉应有的光物理、电化学等特性.  相似文献   

8.
茂钛/MAO催化体系进行降冰片烯聚合的研究   总被引:2,自引:0,他引:2  
以降冰片烯为例的环状烯烃的聚合方式主要有两种 :( A) Vinyl-type polymerization;( B) Ring-Opening Polymerization   80年代中期以前 ,环烯烃聚合研究主要集中在开环易位聚合 (ROMP)反应 [1] .Kaminsky[2 ] 首次以[En(Ind) 2 Zr Cl2 ]/MAO等为催化剂进行降冰片烯的聚合 ,获得了熔点极高 (高于其 40 0℃的分解温度 )的大分子量加成结构的聚合物 .研究结果表明 ,具有 C2 和 Cs对称性的茂锆催化体系能高活性地得到降冰片烯加成聚合物 [3,4 ] ,但是这些由茂锆催化体系合成的降冰片烯聚合物不溶于有机溶剂 ,难以进行精确定量的结…  相似文献   

9.
合成了新型催化剂8-苯胺-1-萘磺酸钛配合物, 并应用于乙烯与降冰片烯的共聚合反应中. 分别考察了助催化剂种类[甲基铝氧烷(MAO)和三乙基铝(TEA)]、 降冰片烯浓度、 Al/Ti摩尔比、 聚合温度和聚合压力对催化活性与共聚性能的影响. 通过核磁共振、示差扫描量热和凝胶渗透色谱等对所制备的共聚物进行了表征. 结果表明, 在相同条件下, 以MAO为助催化剂时, 共聚催化活性更高, 催化剂为单活性中心, 可得到分子量分布较窄(PDI≈3)的共聚产物, 其共聚反应机理为加成聚合. 另外, 随着降冰片烯浓度的升高, 共聚物中降冰片烯单元的摩尔比呈线性上升趋势, 所得共聚物的熔点随之降低.  相似文献   

10.
Fe(acac)3-Al(i-Bu)3-CCl4催化马来酸酐与降冰片烯共聚   总被引:1,自引:0,他引:1  
房江华  杨科芳  胡富陶 《催化学报》2005,26(12):1113-1116
 研究了Fe(acac)3-Al(i-Bu)3-CCl4(acac=乙酰丙酮)催化体系对马来酸酐(MA)与降冰片烯(NBE)交替聚合反应的催化性能. 用元素分析、核磁共振和红外光谱研究了共聚物的结构,在单体比为1∶1时,共聚物中MA和NBE的含量分别为52.2%和47.8%. 凝胶渗透色谱结果表明共聚物分子量分布窄. 动力学研究结果表明, MA与NBE共聚对单体浓度呈一级反应,其表观活化能为74.3 kJ/mol.  相似文献   

11.
Poly(vinyl chloride)-poly(ethylene oxide) block copolymers have been synthesized in solution and emulsion. The polymers were made by first synthesizing macroazonitriles through the reaction of 4,4′-azobis-4-cyanovleryl chloride with hydroxy-terminated poly(ethylene oxide) of varying molecular weights. These macroazonitriles had molecular weights in the range of 3000–88,000 and degrees of polymerization from 5 to 24. Thermal decomposition of the azolinkages in the presence of vinyl chloride monomer yielded block copolymers containing form 2 to 20 wt % poly(ethylene oxide). The structures of the block copolymers were characterized by spectrometric, elemental and molecular weight analyses. The possibility of some graft polymerization occurring via free-radical extraction of a methylene hydrogen from the poly(ethylene oxide) was considered. Polymerization of vinyl chloride with an azonitrile initiator in the presence of a poly(ethylene oxide) yielded predominately homopolymer with some grafted poly(vinyl chloride).  相似文献   

12.
The synthesis of three different poly(ethylene oxide) macromonomers with a norbornene and oxanorbornene end group is presented. The macromonomers were polymerized to comb‐polymers by ring‐opening metathesis polymerization (ROMP) using Grubbs' Catalyst G3 to produce water soluble polymers with polydispersities between 1.04 and 1.30 and molecular weights between 14,000 and 50,000 g/mol. Characterization by static and dynamic light scattering reveals that the comb‐polymers with norbornene backbone are molecularly disperse in aqueous solution, while the oxanorbornene‐backbone polymers form small water‐soluble aggregates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2640–2648, 2008  相似文献   

13.
Poly(diarylsilmethylene)s with phenyl or tolyl substituents on Si atoms were synthesized by ring-opening polymerization of corresponding 1,1,3,3-tetraaryl-1,3-disilacyclobutanes, and were characterized by means of DSC, x-ray diffraction and melt viscosity measurements. Three preparative routes including catalytic and noncatalytic polymerization methods were examined to see differences in properties of the resulting polymers. The polymers thus obtained were crystalline and soluble in limited solvents such as diphenyl sulfone at tem-peratures above 250°C. Poly(diphenylsilmethylene) exhibited a melting temperature of about 350°C, whereas those of polymers with tolyl groups were observed in a temperature range between 310 and 330°C. The melt viscosity of the poly(diarylsilmethylene)s was measured to obtain insight into the molecular weights of the polymers, and the results indicated that the molecular weights are modifiable by varying the monomer-to-catalyst ratio when solution polymerization is employed. The DSC and x-ray studies were also carried out with focusing on the melting and crystallization behavior of these polymers. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Bis(pyrrolide-imine) Ti complexes in conjunction with methylalumoxane (MAO) were found to work as efficient catalysts for the copolymerization of ethylene and norbornene to afford unique copolymers via an addition-type polymerization mechanism. The catalysts exhibited very high norbornene incorporation, superior to that obtained with Me(2)Si(Me(4)Cp)(N-tert-Bu)TiCl(2) (CGC). The sterically open and highly electrophilic nature of the catalysts is probably responsible for the excellent norbornene incorporation. The catalysts displayed a marked tendency to produce alternating copolymers, which have stereoirregular structures despite the C(2) symmetric nature of the catalysts. The norbornene/ethylene molar ratio in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer. At norbornene/ethylene ratios larger than ca. 1, the catalysts mediated room-temperature living copolymerization of ethylene and norbornene to form high molecular weight monodisperse copolymers (M(n) > 500,000, M(w)/M(n) < 1.20). (13)C NMR spectroscopic analysis of a copolymer, produced under conditions that gave low molecular weight, demonstrated that the copolymerization is initiated by norbornene insertion and that the catalyst mostly exists as a norbornene-last-inserted species under living conditions. Polymerization behavior coupled with DFT calculations suggested that the highly controlled living polymerization stems from the fact that the catalysts possess high affinity and high incorporation ability for norbornene as well as the characteristics of a living ethylene polymerization though under limited conditions (M(n) 225,000, M(w)/M(n) 1.15, 10-s polymerization, 25 degrees C). With the catalyst, unique block copolymers [i.e., poly(ethylene-co-norbornene)(1)-b-poly(ethylene-co-norbornene)(2), PE-b-poly(ethylene-co-norbornene)] were successfully synthesized from ethylene and norbornene. Transmission electron microscopy (TEM) indicated that the PE-b-poly(ethylene-co-norbornene) possesses high potential as a new material consisting of crystalline and amorphous segments which are chemically linked.  相似文献   

15.
TheSynthesisofPoly(ethyleneoxide)┐Block┐Polybutylacrylate**SupportedbytheNationalNaturalScienceFoundationofChinaandDoctoralfo...  相似文献   

16.
Homo‐ and copolymerization of ethylene and norbornene were investigated with bis(β‐diketiminato) titanium complexes [ArNC(CR3)CHC(CR3)NAr]2TiCl2 (R = F, Ar = 2,6‐diisopropylphenyl 2a; R = F, Ar = 2,6‐dimethylphenyl 2b ; R = H, Ar = 2,6‐diisopropylphenyl 2c ; R = H, Ar = 2,6‐dimethylphenyl 2d) in the presence of methylaluminoxane (MAO). The influence of steric and electric effects of complexes on catalytic activity was evaluated. With MAO as cocatalyst, complexes 2a–d are moderately active catalysts for ethylene polymerization producing high‐molecular weight polyethylenes bearing linear structures, but low active catalysts for norbornene polymerization. Moreover, 2a – d are also active ethylene–norbornene (E–N) copolymerization catalysts. The incorporation of norbornene in the E–N copolymer could be controlled by varying the charged norbornene. 13C NMR analyses showed the microstructures of the E–N copolymers were predominantly alternated and isolated norbornene units in copolymer, dyad, and triad sequences of norbornene were detected in the E–N copolymers with high incorporated content of norbornene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 93–101, 2008  相似文献   

17.
Two general types of poly(phosphonatoalanes), [? Al(X)O? P(O)(R)O? ]n (X = Cl or F, R = alkyl or aryl) and [? Al(OP(O)R2)O? P(O)(R′)O? ]n, were prepared and studied. Poly[chloro(phosphonato)alanes] are influsible and have low molecular weights (n = 4–11). Polyfluoro(phosphonato)alanes are fusible and also have low molecular weights, but under certain conditions grow to higher polymers (n = 30–45). Poly[phosphinato(phosphonato)alanes] are fusible and are prepared with high molecular weights (n = 83–340).  相似文献   

18.
Two diastereomeric derivatives of norbornene, dimethyl (1R,2R,3S,4S)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate and dimethyl (1R,2S,3S,4S)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate, were synthesized and polymerized using ring-opening metathesis polymerization (ROMP). For comparative purposes, diastereomeric derivatives of Dewar benzene, dimethyl (1R,2S,3R,4S)-bicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate and dimethyl (1R,2S,3S,4S)-bicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate, were also synthesized and polymerized using ROMP. The polymerization reactions proceeded in a controlled manner as evidenced in part by linear relationships between the monomer-to-catalyst feed ratios and the molecular weights of the polymer products. Chain extension experiments were also conducted which facilitated the formation of block copolymers. Although the poly(norbornene) derivatives exhibited glass transition temperatures that were dependent on their monomer stereochemistry (cis: 115°C vs. trans: 125°C), more pronounced differences were observed upon analysis of the polymers derived from Dewar benzene (cis: 70°C vs. trans: 95°C). Likewise, microphase separation was observed in block copolymers that were prepared using the diastereomeric monomers derived from Dewar benzene but not in block copolymers of the norbornene-based diastereomers. The differential thermal properties were attributed to the relative monomer sizes as reducing the distances between the polymer backbones and the pendant stereocenters appeared to enhance the thermal effects.  相似文献   

19.
开环聚合;生物降解共聚物;两亲型聚L-亮氨酸-聚乙二醇单甲醚嵌段共聚物的合成与表征  相似文献   

20.
Norbornene macromonomers 2 and 3 bearing 10‐ and 20‐mers of lactide were synthesized by ring‐opening polymerization of lactide using 5‐norbornene‐2, 3‐exo‐exo‐dimethanol as an initiator and DBU as a catalyst. Macromonomers 2 and 3 were copolymerized with amino acid derived norbornene monomer 1 , using the Grubbs 2nd generation ruthenium catalyst. The random and block copolymers with Mn's ranging from 28,000 to 180,000 were obtained almost quantitatively where the Mn's of the block copolymers were higher than those of the random ones. Three‐dimensional macroporous structure polymers with average pore size of 10 µm could be found in poly( 1 ) and the block co‐polymer of 1 and 2 or 1 and 3 at the high ratio of 1 . Meanwhile, poly( 2 ) and poly( 3 ) along with block and random copolymers with low ratio of 1 exhibit much larger pores in the range of 50–300 µm. The porosity increased with increase in the unit ratio of 1 . The compressive strength of the porous structure of poly( 2 ) and poly( 3 ) was improved by the copolymerization with 1 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1660–1670  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号