首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper, a new lattice model of two-lane traffic flow with the honk effect term is proposed to study the influence of the honk effect on wide moving jams under lane changing. The linear stability condition on two-lane highway is obtained by applying the linear stability theory. The modified Korteweg-de Vries (KdV) equation near the critical point is derived and the coexisting curves resulted from the modified KdV equation can be described, which shows that the critical point, the coexisting curve and the neutral stability line decrease with increasing the honk effect coefficient. A wide moving jam can be conceivably described approximately in the unstable region. Numerical simulation is performed to verify the analytic results. The results show that the honk effect could suppress effectively the congested traffic patterns about wide moving jam propagation in lattice model of two-lane traffic flow.  相似文献   

2.
Flow difference effect in the lattice hydrodynamic model   总被引:1,自引:0,他引:1       下载免费PDF全文
田钧方  贾斌  李新刚  高自友 《中国物理 B》2010,19(4):40303-040303
In this paper, a new lattice hydrodynamic model based on Nagatani's model [Nagatani T 1998 Physica A 261 599] is presented by introducing the flow difference effect. The stability condition for the new model is obtained by using the linear stability theory. The result shows that considering the flow difference effect leads to stabilization of the system compared with the original lattice hydrodynamic model. The jamming transitions among the freely moving phase, the coexisting phase, and the uniform congested phase are studied by nonlinear analysis. The modified KdV equation near the critical point is derived to describe the traffic jam, and kink--antikink soliton solutions related to the traffic density waves are obtained. The simulation results are consistent with the theoretical analysis for the new model.  相似文献   

3.
In this paper, a new lattice hydrodynamic model is proposed by incorporating the driver anticipation efect of next-nearest-neighbor site. The linear stability analysis and nonlinear analysis show that the driver anticipation efect of next-nearest-neighbor site can enlarge the stable area of trafc flow. The space can be divided into three regions: stable, metastable, and unstable. Numerical simulation further illuminates that the driver anticipation efect of the next-nearest-neighbor site can stabilize trafc flow in our modified lattice model, which is consistent with the analytical results.  相似文献   

4.
In this Letter, a new lattice model is presented with the consideration of the driver?s forecast effects (DFE). The linear stability condition of the extended model is obtained by using the linear stability theory. The analytical results show that the new model can improve the stability of traffic flow by considering DFE. The modified KdV equation near the critical point is derived to describe the traffic jam by nonlinear analysis. Numerical simulation also shows that the new model can improve the stability of traffic flow by adjusting the driver?s forecast intensity parameter, which is consistent with the theoretical analysis.  相似文献   

5.
王涛  高自友  赵小梅 《中国物理 B》2012,21(2):20512-020512
Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reductive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.  相似文献   

6.
In this paper, a new lattice hydrodynamic traffic flow model is proposed by considering the driver’s anticipation effect in sensing relative flux (DAESRF) for two-lane system. The effect of anticipation parameter on the stability of traffic flow is examined through linear stability analysis and shown that the anticipation term can significantly enlarge the stability region on the phase diagram. To describe the phase transition of traffic flow, mKdV equation near the critical point is derived through nonlinear analysis. The theoretical findings have been verified using numerical simulation which confirms that traffic jam can be suppressed efficiently by considering the anticipation effect in the new lattice model for two-lane traffic.  相似文献   

7.
祝会兵 《中国物理 B》2009,18(4):1322-1327
This paper proposes two lattice traffic models by taking into account the drivers' delay in response. The lattice versions of the hydrodynamic model are described by the differential-difference equation and difference-difference equation, respectively. The stability conditions for the two models are obtained by using the linear stability theory. The modified KdV equation near the critical point is derived to describe the traffic jam by using the reductive perturbation method, and the kink--antikink soliton solutions related to the traffic density waves are obtained. The results show that the drivers' delay in sensing headway plays an important role in jamming transition.  相似文献   

8.
In this paper, a new lattice model of traffic flow is proposed to investigate wide moving jams in traffic flow with the consideration of the driver anticipation information about two preceding sites. The linear stability condition is obtained by using linear stability analysis. The mKdV equation is derived through nonlinear analysis, which can be conceivably taken as an approximation to a wide moving jam. Numerical simulation also confirms that the congested traffic patterns about wide moving jam propagation in accordance with empirical results can be suppressed efficiently by taking the driver anticipation effect of two preceding sites into account in a new lattice model.  相似文献   

9.
H.X. Ge  R.J. Cheng 《Physica A》2010,389(14):2825-663
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but also connected with the microscopic car following model closely. The modified Korteweg-de Vries (mKdV) equation related to the density wave in a congested traffic region has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail for the car following model. We devote ourselves to obtaining the KdV equation from the original lattice hydrodynamic models and the KdV soliton solution to describe the traffic jam. Especially, we obtain the general soliton solution of the KdV equation and the mKdV equation. We review several lattice hydrodynamic models, which were proposed recently. We compare the modified models and carry out some analysis. Numerical simulations are conducted to demonstrate the nonlinear analysis results.  相似文献   

10.
H.X. Ge 《Physica A》2009,388(8):1682-1686
The lattice hydrodynamic model is not only a simplified version of the macroscopic hydrodynamic model, but is also closely connected with the microscopic car following model. The modified Korteweg-de Vries (mKdV) equation about the density wave in congested traffic has been derived near the critical point since Nagatani first proposed it. But the Korteweg-de Vries (KdV) equation near the neutral stability line has not been studied, which has been investigated in detail in the car following model. So we devote ourselves to obtaining the KdV equation from the lattice hydrodynamic model and obtaining the KdV soliton solution describing the traffic jam. Numerical simulation is conducted, to demonstrate the nonlinear analysis result.  相似文献   

11.
Two velocity difference model for a car following theory   总被引:1,自引:0,他引:1  
H.X. Ge  R.J. Cheng 《Physica A》2008,387(21):5239-5245
In the light of the optimal velocity model, a two velocity difference model for a car-following theory is put forward considering navigation in modern traffic. To our knowledge, the model is an improvement over the previous ones theoretically, because it considers more aspects in the car-following process than others. Then we investigate the property of the model using linear and nonlinear analyses. The Korteweg-de Vries equation (for short, the KdV equation) near the neutral stability line and the modified Korteweg-de Vries equation (for short, the mKdV equation) around the critical point are derived by applying the reductive perturbation method. The traffic jam could be thus described by the KdV soliton and the kink-anti-kink soliton for the KdV equation and mKdV equation, respectively. Numerical simulations are made to verify the model, and good results are obtained with the new model.  相似文献   

12.
Hong-Xia Ge  Rong-Jun Cheng 《Physica A》2008,387(28):6952-6958
The novel lattice hydrodynamic model is presented by incorporating the “backward looking” effect. The stability condition for the the model is obtained using the linear stability theory. The result shows that considering one following site in vehicle motion leads to the stabilization of the system compared with the original lattice hydrodynamic model and the cooperative driving lattice hydrodynamic model. The Korteweg-de Vries (KdV, for short) equation near the neutral stability line is derived by using the reductive perturbation method to show the traffic jam which is proved to be described by KdV soliton solution obtained from the KdV equation. The simulation result is consistent with the nonlinear analysis.  相似文献   

13.
A new lattice model of traffic flow is presented by taking into account the anticipation of potential lane changing on front site on single lane. The stability condition of the extended model is obtained by using the linear stability theory. The modified KdV equation near the critical point is constructed and solved through nonlinear analysis. And the phase space of traffic flow in the density-sensitivity space could be divided into three regions: stable, metastable and unstable ones, respectively. Numerical simulation also shows that the consideration of lane changing probability in lattice model can stabilize traffic flow, which implies that the new consideration has an important effect on traffic flow in lattice models.  相似文献   

14.
李志鹏  刘富强  孙剑 《中国物理 B》2011,20(8):88901-088901
In this paper,the lattice model is presented,incorporating not only site information about preceding cars but also relative currents in front.We derive the stability condition of the extended model by considering a small perturbation around the homogeneous flow solution and find that the improvement in the stability of traffic flow is obtained by taking into account preceding mixture traffic information.Direct simulations also confirm that the traffic jam can be suppressed efficiently by considering the relative currents ahead,just like incorporating site information in front.Moreover,from the nonlinear analysis of the extended models,the preceding mixture traffic information dependence of the propagating kink solutions for traffic jams is obtained by deriving the modified KdV equation near the critical point using the reductive perturbation method.  相似文献   

15.
优化车流的交通流格子模型   总被引:5,自引:0,他引:5       下载免费PDF全文
薛郁 《物理学报》2004,53(1):25-30
在一维交通流格子模型的基础上,分别提出考虑最近邻车和次近邻车以及考虑前、后近邻车相互作用进行车流优化的一维交通流格子模型.应用线性稳定性理论和非线性理论进行分析,得出车流的稳定性条件,并导出了描述交通阻塞相变的mKdV方程.用数值模拟验证了mKdV方程的解,数值模拟结果表明考虑最近邻车和次近邻车的优化车流能够增强车流稳定性,而考虑前、后近邻车的优化车流将使稳定性减小. 关键词: 交通流 交通相变 稳定判据 mKdV方程  相似文献   

16.
The optimal velocity model of traffic is extended to take the relative velocity into account. The traffic behavior is investigated numerically and analytically with this model. It is shown that the car interaction with the relative velocity can effect the stability of the traffic flow and raise critical density. The jamming transition between the freely moving and jamming phases is investigated with the linear stability analysis and nonlinear perturbation methods. The traffic jam is described by the kink solution of the modified Korteweg--de Vries equation. The theoretical result is in good agreement with the simulation.  相似文献   

17.
The optimal velocity model of traffc is extended to take the relative velocity into account. The traffcbehavior is investigated numerically and analytically with this model. It is shown that the car interaction with therelative velocity can effect the stability of the traffic flow and raise critical density. The jamming transition between thefreely moving and jamming phases is investigated with the linear stability analysis and nonlinear perturbation methods.The traffic jam is described by the kink solution of the modified Korteweg-de Vries equation. The theoretical result isin good agreement with the simulation.  相似文献   

18.
In this paper, an extended car-following model considering the delay of the driver’s response in sensing headway is proposed to describe the traffic jam. It is shown that the stability region decreases when the driver’s physical delay in sensing headway increases. The phase transition among the freely moving phase, the coexisting phase, and the uniformly congested phase occurs below the critical point. By applying the reductive perturbation method, we get the time-dependent Ginzburg-Landau (TDGL) equation from the car-following model to describe the transition and critical phenomenon in traffic flow. We show the connection between the TDGL equation and the mKdV equation describing the traffic jam.  相似文献   

19.
田欢欢  薛郁 《中国物理 B》2012,21(7):70505-070505
A new two-dimensional lattice hydrodynamic model considering the turning capability of cars is proposed. Based on this model, the stability condition for this new model is obtained by using linear stability analysis. Near the critical point, the modified KdV equation is deduced by using the nonlinear theory. The results of numerical simulation indicate that the critical point a c increases with the increase of the fraction p of northbound cars which continue to move along the positive y direction for c = 0.3, but decreases with the increase of p for c = 0.7. The results also indicate that the cars moving along only one direction (eastbound or northbound) are most stable.  相似文献   

20.
考虑驾驶员预估效应的交通流格子模型与数值仿真   总被引:2,自引:0,他引:2       下载免费PDF全文
孙棣华  田川 《物理学报》2011,60(6):68901-068901
考虑驾驶员的预估效应对车流的影响,提出了一个改进的一维交通流格子模型.基于线性稳定性理论得到了该模型的线性稳定性判据;运用非线性分析方法导出了描述交通阻塞相变时的mKdV方程.应用数值仿真验证了mKdV方程的解,研究表明适当考虑车流中预估效应的作用能够增强交通流稳定性,从而能有效抑制交通阻塞的形成. 关键词: 预估效应 交通流 格子模型 数值仿真  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号