首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Protein tyrosine phosphatases (PTPs) are critical cell-signaling molecules. Inhibitors that are selective for individual PTPs would be valuable tools for dissecting complicated phosphorylation networks. However, the common architecture of PTP active sites impedes the discovery of such compounds. To achieve target selectivity, we have redesigned a PTP/inhibitor interface. Site-directed mutagenesis of a prototypical phosphatase, PTP1B, was used to generate "inhibitor-sensitized" PTPs. The PTP1B mutants were targeted by modifying a broad specificity PTP inhibitor with chemical groups that are sterically incompatible with wild-type PTP active sites. From a small panel of putative inhibitors, compounds that selectively inhibit Ile219Ala PTP1B over the wild-type enzyme were identified. Importantly, the corresponding mutation also conferred novel inhibitor sensitivity to T-cell PTP, suggesting that a readily identifiable point mutation can be used to generate a variety of inhibitor-sensitive PTPs.  相似文献   

2.
Five oxovanadium(iv) complexes, which were divided into two groups, [V(IV)O(bhbb, nhbb)(H(2)O)(2)] (tridentate ligands: H(2)bhbb = 2-(5-bromo-2-hydroxylbenzylideneamino)benzoic acid, ; H(2)nhbb = 2-(5-nitro-2-hydroxylbenzylideneamino)benzoic acid, ) and [V(IV)O(cpmp, bpmp, npmp)(2)] (bidentate ligands: Hcpmp = 4-chloro-2-((phenylimino)methyl)phenol, ; Hbpmp = 4-bromo-2-((phenylimino)methyl)phenol, ; Hnpmp = 4-nitro-2-((phenylimino)methyl) phenol, ) have been prepared and characterized by elemental analysis, infrared, UV-visible and electrospray ionization mass spectrometry. The coordination in [V(IV)O(bhbb)(H(2)O)(2)] () was confirmed by X-ray crystal structure analysis. The oxidation state of V(iv) with d(1) configuration in was confirmed by EPR. The speciation of VO/H(2)bhbb in methanol-aqueous solution was investigated by potentiometric pH titrations. The result indicated that the main species were [V(IV)O(bhbb)(OH)](-) and [V(IV)O(bhbb)(OH)(2)](2-) at the pH range 7.0-7.4. The structure-activity relationship of the vanadium complexes in inhibiting protein tyrosine phosphatases (protein tyrosine phosphatase 1B, PTP1B; T-cell protein tyrosine phosphatase, TCPTP; megakaryocyte protein-tyrosine phosphatase, PTP-MEG2; Src homology phosphatase 1, SHP-1 and Src homology phosphatase 2, SHP-2) was investigated. The oxovanadium(iv) complexes were potent inhibitors of PTP1B, TCPTP, PTP-MEG2, SHP-1 and SHP-2, but exhibited different inhibitory abilities over different PTPs. Complexes and displayed better selectivity to PTP1B over the other four PTPs. Kinetic data showed that complex inhibited PTP1B, TCPTP and SHP-1 with a noncompetitive inhibition mode, but a classical competitive inhibition mode for PTP-MEG2 and SHP-2. The results demonstrated that both the structures of vanadium complexes and the conformations of PTPs influenced PTP inhibition activity. The proper modification of the organic ligand moieties may result in screening potent and selective vanadium-based PTP1B inhibitors.  相似文献   

3.
[reaction: see text] We have successfully designed and synthesized a small library of protein tyrosine phosphatase (PTP) inhibitors, in which the so-called "click chemistry" or Cu(I)-catalyzed 1,3-dipolar alkyne-azide coupling reaction was carried out for rapid assembly of 66 different bidentate compounds. Subsequent in situ enzymatic screening revealed a potential PTP1B inhibitor (IC(50) = 4.7 microM) which is 10-100 fold more potent than other PTPs.  相似文献   

4.

Background

Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results.

Results

Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5.

Conclusion

We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common mechanism of inhibitory action for these scaffolds.
  相似文献   

5.
蛋白酪氨酸磷酸酶1B (PTP-1B)特异性抑制剂是近年来治疗II型糖尿病药物研发的热点. PTP-1B与T细胞蛋白酪氨酸磷酸酶(TCPTP)同源性很高, 为了避免在使用PTP-1B抑制剂过程中对TCPTP产生交叉抑制, 则需要设计开发对PTP-1B具有高活性和高特异选择性的小分子化合物. 苯并三唑类化合物对PTP-1B的抑制活性很高, 并且其中一些化合物对PTP-1B表现出了较好的特异选择性, 具有良好的药用开发前景. 通过CoMFA和CoMSIA两种方法分别对该类化合物进行了三维定量结构-活性关系(3D-QSAR)和三维定量结构-选择性关系(3D-QSSR)研究, 并建立了相关的预测模型. 计算结果表明PTP-1B中的Arg24与化合物的氢键相互作用是提高选择性的重要因素, 并且在R2位引入氢键供体且体积较大的强供电子基团, 将有利于化合物抑制活性的提高, 而在R2位取代基的末端引入氢键受体且体积较大的强吸电子基团, 将有利于化合物选择性的提高.  相似文献   

6.
设计合成了18个以吡唑桥连1,3,4-噁二唑和1,3,5-三嗪的新型多杂环分子[7A(a~f),7B(a~f)和7C(a~f)];通过红外光谱(IR)、核磁共振波谱(NMR)和高分辨质谱(HRMS)等对目标分子进行了结构表征;评价了目标分子对蛋白酪氨酸磷酸酯酶1B(PTP1B)和细胞分裂周期25磷酸酯酶B(Cdc25B)的抑制活性.结果表明,所有目标分子对PTP1B和Cdc25B均有较好的抑制活性,其中,9个目标分子表现出优异的PTP1B和Cdc25B抑制效果,IC50值低于齐墩果酸(PTP1B抑制活性测试参照物)和正钒酸钠(Cdc25B抑制活性测试阳性参照物),有望成为潜在的PTP1B和Cdc25B抑制剂.  相似文献   

7.
Triazolyl phenylalanine and tyrosine‐aryl C‐glycoside hybrids were readily synthesized via microwave‐assisted Cu(I)‐catalyzed azide‐alkyne 1,3‐dipolar cycloaddition in high yields. Successive enzymatic assay identified the synthesized glycoconjugates as novel PTP1B inhibitors with low micromole‐ranged inhibitory activity and at least several‐fold selectivity over other homologous PTPs tested. In addition, the benzyl groups on glucosyl moiety were found crucial toward PTP1B inhibition.  相似文献   

8.
Three phosphono-containing multidentate ligands were employed to synthesize quinquedentate binuclear copper complexes, [Cu(2)L(2)] (1-3) (H(2)L1 = diethyl(propane-1,3-diylbis(azanediyl))bis((2-hydroxyphenyl)methylene)bis(hydrogen phosphonate), H(2)L2 = diethyl(ethane-1,2-diylbis(azanediyl))bis((2-hydroxyphenyl)methylene)bis(hydrogen phosphonate), H(2)L3 = diethyl(hexane-1,6-diylbis(azanediyl))bis((2-hydroxyphenyl)methylene)bis(hydrogen phosphonate)), which were characterized by elemental analysis, IR, X-ray diffraction analysis, electrospray ionization mass spectra. Complexes 1 and 2 crystallized in the triclinic system with space group P ?1. The speciation of the Cu-H(2)L1 system in aqueous solution was investigated by potentiometric pH titrations. The three dicopper complexes exhibited potent and almost the same inhibitory effects against protein tyrosine phosphatase 1B (PTP1B) and T-cell protein tyrosine phosphatase (TCPTP) with IC(50) of 0.16-0.24 μM, about 10-fold stronger inhibition than against Src homology phosphatase 1 (SHP-1), 30-fold than against Src homology phosphatase 2 (SHP-2) and more than 100-fold than against megakaryocyte protein-tyrosine phosphatase 2 (PTP-MEG2). Fluorescence titrations revealed complex 1 bond to the five PTPs with molar ratio of 1:1 and binding constants of 1.62 × 10(6), 3.09 × 10(6), 1.95 × 10(5), 2.24 × 10(5), 1.55 × 10(4) M(-1) for PTP1B, TCPTP, SHP-1, SHP-2 and PTP-MEG2, respectively, consistent with the inhibitory abilities from IC(50) and K(i) values. Also, the three copper complexes could inhibit phosphatase activity of cell extracts from C6 rat glioma cells. The results suggested the structures of copper complexes influence selectivity over different PTPs.  相似文献   

9.
CPTP1 is a nontransmembrane chicken protein tyrosine phosphatase having 92% sequence homology to the corresponding 321 amino acids of human protein tyrosine phosphatase 1B (HPTP1B). Using anti-CPTP1 antibody, we identified CPTP1-like rat PTP1 of 51 kDa in Rat-1 and v-src-transformed Rat-1 fibroblasts. Here we show that CPTP1-like rat PTP1 binds to p60(v-src) in vivo and CPTP1 also can associate with p60(v-src) in cell lysate of v-src- transformed Rat-1 fibroblasts. Interaction between HPTP1B-type PTPs, CPTP1-like rat PTP1 and CPTP1, and p60(v-src) was reduced by vanadate treatment for 13 h due to down regulation of the protein level of p60(v-src) in vivo. Interestingly, CPTP1-like rat PTP1 was coimmunoprecipitated with a 70-kDa protein which has a possibility to be tyrosine- phosphorylated by p60(v-src) in v-src-transformed Rat-1 fibroblasts. These results suggest that HPTP1B-type PTPs may play an important role in p60(src) dependent signal pathway in eucaryotic cells.  相似文献   

10.
为构筑V型对称结构的三唑并噻二唑类衍生物, 将间苯二甲酸和5-氨基间苯二甲酸分别与3-脂肪基-1,2,4-三唑(1)缩合, 在POCl3催化下, 合成了14个V型对称结构三唑并噻二唑稠环衍生物(2a~2g和3a~3g), 其中13个化合物为首次合成.通过红外光谱、 核磁共振波谱和高分辨质谱等对目标产物的结构进行了表征. 研究了目标产物对细胞周期分裂蛋白25B(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)的抑制性能, 结果发现, 部分目标产物对Cdc25B表现出良好的抑制活性, 其中化合物3b和3f的抑制活性IC50值分别为(1.34±0.39)和(0.61±0.09) μg/mL, 有望作为治疗癌症的潜在Cdc25B抑制剂; 化合物3b~3g对PTP1B均表现出良好的抑制活性, 其中化合物3b和3e的IC50值分别为(0.36±0.05)和(0.97±0.08) μg/mL, 有望作为治糖尿病的潜在PTP1B抑制剂.  相似文献   

11.
合成出了一系列含苯并咪唑/芳氧甲基骨架的3,6-二取代三唑并噻二唑衍生物3a~3l,其结构经傅里叶变换红外光谱仪(FT-IR)、核磁共振波谱仪(NMR)和元素分析得以确认。 评价了它们对细胞分裂周期25B磷酸酶(Cdc25B)/蛋白酪氨酸磷酸酶1B(PTP1B)的抑制活性,讨论了构效关系。 生物活性测试结果显示,化合物3a对Cdc25B和PTP1B的抑制活性最高,其半数抑制浓度(IC50)值分别为(0.46±0.02) μg/mL和(1.77±0.40) μg/mL。 所得研究结果为开发新型Cdc25B/PTP1B抑制剂提供了参考依据。  相似文献   

12.
蛋白酪氨酸磷酸酯酶-1B(PTP1B)是抗糖尿病治疗的重要靶点,因此创制活性优良的PTP1B抑制剂具有重要意义。 本文设计并合成了11个含1,3-硒唑和1,2,4-三唑活性组块新型结构目标分子(ZLXZ1-ZLXZ11),并利用傅里叶变换红外光谱仪(FTIR)、核磁共振波谱仪(NMR)和高分辨质谱(HRMS)等对其进行了结构表征。 首先选择ZLXZ1和ZLXZ11在MOE 2015.10程序上,与PTP1B进行分子对接模拟,结果表明,在ZLXZ1分子中硒唑环上的硒原子与PTP1B中副催化位点Tyr46、Ala217、Lys120和Asp 48分别形成了π-H作用和氢键作用。 在ZLXZ11分子中硒唑上的硒原子与PTP1B中Asp181、Arg221和Asp48形成了氢键作用。 在分子对接模拟的基础上,测试了11个目标分子的抑制活性,结果表明,所有目标分子的抑制率均在87.02%以上,其中3个目标分子PTP1B抑制活性高于阳性参照物齐墩果酸,抑制活性优良,有望成为潜在的PTP1B抑制剂。  相似文献   

13.
The efficient construction of triazolyl peptidomimetics via the powerful click chemistry for the discovery of small molecule‐based chemotherapeutic agents represents a promising strategy in drug development today. Herein, the synthesis of novel mono‐triazolyl or bis‐triazolyl amino acid derivatives was rapidly achieved via microwave‐assisted Cu(I)‐catalyzed azide‐alkyne 1,3‐dipolar cycloaddition (CuAAC). Subsequent in vitro enzymatic assay on several homologous protein tyrosine phosphatases (PTPs) identified the triazolyl dimers as new specific inhibitors of Cell Cycle Division 25B (CDC25B) phosphatase and Protein Tyrosine Phosphatase 1B (PTP1B).  相似文献   

14.
The protein tyrosine phosphatases (PTPs) constitute a family of closely related key regulatory enzymes that dephosphorylate phosphotyrosine residues in their protein substrates. Malfunctions in PTP activity are linked to various diseases, ranging from cancer to neurological disorders and diabetes. Consequently, PTPs have emerged as promising targets for therapeutic intervention in recent years. In this review, general aspects of PTPs and the development of small-molecule inhibitors of PTPs by both academic research groups and pharmaceutical companies are discussed. Different strategies have been successfully applied to identify potent and selective inhibitors. These studies constitute the basis for the future development of PTP inhibitors as drugs.  相似文献   

15.
We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).  相似文献   

16.
Protein tyrosine phosphatase 1beta (PTP1beta) acts as a negative regulator of insulin signaling. Selective inhibition of PTP1beta has served as a potential drug target for the treatment of type 2 diabetes mellitus. We evaluated the inhibitory effect of Phellinus linteus against PTP1beta as part of our ongoing search for natural therapeutic and preventive agents for diabetes mellitus. Fractions of the P. linteus extract were found to exhibit significant inhibitory activities against PTP1beta. In an attempt to identify bioactive components, we isolated, from the most active ethyl acetate fraction, five hispidin derivatives (phelligridimer A, davallialactone, hypholomine B, interfungins A, and inoscavin A) and four phenolic compounds (protocatechuic acid, protocatechualdehyde, caffeic acid, and ellagic acid). The chemical structures of these compounds were elucidated from spectroscopic evidence and by comparison with published data. All the compounds strongly inhibited PTP1beta activity in an in vitro assay; their IC50 values ranged from 9.0 +/- 0.01 to 58.2 +/- 0.3 microM. Our results indicated that the hispidin skeleton may be an important moiety for inhibitory activity of the above compounds against PTP1beta. Thus, hispidin derivatives could be a potent new class of natural PTP1beta inhibitors.  相似文献   

17.
Protein tyrosine phosphatase 1B (PTP1B) has received much attention due to its pivotal role in type 2 diabetes and obesity as a negative regulator of the insulin signaling pathway. Mangiferin, a xanthone glucoside, has been reported to possess significant antidiabetic activity. In the present study, a series of mangiferin derivatives was synthesized and evaluated for their PTP1B inhibitory activity. Some of the screened compounds displayed good PTP1B inhibitory activity. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 549–551, November–December, 2007.  相似文献   

18.
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a–f and 5a–f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.  相似文献   

19.
Six copper complexes of Schiff base ligands containing 3,5-substituted-4-salicylideneamino-3,5-dimethyl-1,2,4-triazole have been synthesized and well characterized. The structures of complexes 1 and 2 were determined by X-ray crystal analysis. Fluorescence and potentiometric study indicated that in the physiological pH range, one ligand was dissociated from the complexes to form 1:1 mononucleus copper complexes. The complexes potently inhibit protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) and Src homology phosphatase 1 (SHP-1) with 3-4 fold selectivity against PTP1B over TCPTP and PTP-MEG2, and 3-9 fold over SHP-1, but display almost no inhibition against Src homology phosphatase 2 (SHP-2). Complex 1 inhibits PTP1B with a competitive model with K(i) of 30 nM. Substitution with small groups at the phenyl of the ligand does not obviously influence the inhibitory ability of the complexes.  相似文献   

20.
通过分子对接建立了一系列含二氟甲基磷酸基团(DFMP)或二氟甲基硫酸基团(DFMS)的抑制剂与酪氨酸蛋白磷酸酯酶1B(PTP1B)的相互作用模式, 并通过1 ns的分子动力学模拟和molecular mechanics/generalized Born surface area (MM/GBSA)方法计算了其结合自由能. 计算获得的结合自由能排序和抑制剂与靶酶间结合能力排序一致; 通过基于主方程的自由能计算方法, 获得了抑制剂与靶酶残基间相互作用的信息, 这些信息显示DFMP/DFMS基团的负电荷中心与PTP1B的221位精氨酸正电荷中心之间的静电相互作用强弱决定了此类抑制剂的活性, 进一步的分析还显示位于DFMP/DFMS基团中的氟原子或其他具有适当原子半径的氢键供体原子会增进此类抑制剂与PTP1B活性位点的结合能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号