首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermogalvanic power (Seebeck coefficient) of O2- conducting δ-Bi2O3 and δ-(Bi2O3)1−x(Y2O3)x has been measured directly as a function of temperature and partial oxygen pressure in N2---O2 mixtures. The of δ-(Bi2O3)0.75(R2O3)0.25 with R = Tb---Lu was indirectly determined using an isothermal concentration cell technique. Except for pure δ-Bi2O3, the heat of transport is much smaller than the activation energy for O2- conduction for all materials. The vibrational freedom of O2− ions in all δ-stabilized materials is reflected in their IR spectra at room temperature. Two prototypes of a thermogalvanic PO2 meter were tested.  相似文献   

2.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

3.
The 31P MAS NMR spectrum of solid Li3P7(monoglyme)3 has been reinvestigated over a wide temperature range (−70 to +77°C) and under conditions of better resolution (Larmor frequency of 162 MHz and spinning rate of 30 kHz) than previously measured (121 MHz and 13 kHz). At low temperatures three spinning sideband (ssb) manifolds are observed: a singlet (centered at −45 ppm relative to 85% H3PO4) due to the apical atom (A) of the P7-cage trianion; a 1 : 1 : 1 triplet (at −110, −117, and −124.5 ppm) due to the negatively charged equatorial (E) atoms, and a one to two doublet (at −161 and −168.5 ppm) due to the basal (B) atoms. These results are consistent with the P7 cage having nearly, but not perfect, C3v symmetry. The compound appears to be well ordered in the solid state with very little structural dispersity. On heating, the NMR lines broaden and eventually coalesce into a single ssb manifold. This behavior is ascribed to bond-shift rearrangement similar to the Cope rearrangement in bullvalene. A MAS 2D exchange experiment and a quantitative analysis of the 1D NMR lineshapes indicate that, unlike in solution where the rearrangement involves a single bond shift at a time, in the solid the process involves a succession of two bond shifts: The first leads to an intermediate species in which the rearranged P7 cage is inverted, while in the subsequent step a second bond shift takes place that also restores the original orientation of the cage in the lattice. The overall effect of the double bond shift is equivalent to cyclic permutation of the phosphorus atoms within the five member rings of the P7-cage. The quantitative analysis of the dynamic lineshapes shows that this cyclic permutation proceeds at a different rate in one ring (kd1) than in the other two (kd2,3). The kinetic parameters for these processes are Ea1=18.7 kJ/mol, Ea2,3=58.0 kJ/mol, kd1(17°C)=kd2,3(17°C)=104 s−1. No indications for independent threefold molecular jumps of the P7 cage were found.  相似文献   

4.
To support planetary studies of the Venus atmosphere, we measured line strengths of the 2v3, v1+2v2+v3, and 4v2+v3 bands of the primary isotopologue of carbonyl sulfide (16O12C32S), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm−1, respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm−1 at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2v3 and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman–Wallis factors were derived for the three bands. The band strengths of 2v3, v1+2v2+v3, and 4v2+v3 of 16O12C32S (normalized at 100% of isotopologue) are observed to be 6.315(13)×10−19, 1.570(2)×10−20, and 7.949(20)×10−21 cm−1/molecule cm−2, respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database.  相似文献   

5.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

6.
Using 0.002 cm−1 resolution Fourier transform absorption spectra of an 17O-enriched ozone sample, an extensive analysis of the ν3 band together with a partial identification of the ν1 band of the 17O16O17O isotopomer of ozone has been performed for the first time. As for other C2v-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3–16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers ν03) = 1030.0946 cm−1 and ν01) = 1086.7490 cm−1 were obtained for the ν3 and ν1 bands, respectively.  相似文献   

7.
The surface of 1T-TiS2 was examined by scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The STM and AFM images of this compound were interpreted on the basis of the partial electron density ρ(r,EF) and total electron density ρ(r) of a slab which consists of six (001) 1T-TiS2 layers. Electronic structure calculations were performed using the ab-initio Hartree–Fock program crystal. It was found that the bright spots in experimental STM images correspond to sulfur atoms at both positive and negative bias voltages. The AFM image showed a periodicity which can be explained by the atomic corrugation at the surface. Structural defects on the surface were also investigated, and their interpretation constitutes experimental proof that only sulfur atoms were detected by scanning probe microscopies.  相似文献   

8.
The 2ν3 overtone (A1E) and the ν1 + ν3 (E) combination bands of the oblate symmetric top 14NF3 were studied by FTIR spectroscopy with a resolution of 2.5 × 10−3 cm−1. Nearly 500 lines up to Kmax/Jmax = 30/43 were observed for the weak A1 component reaching the v3 = 20 substate (1803.1302 cm−1), the majority of which corresponded to reinforced K = 3p-type transitions. For the strong E component reaching the v3 = 2±2 substate (1810.4239 cm−1), about 3550 transitions were assigned up to Kmax/Jmax = 65/69, favoring a clear observation of the ℓ(4, −2) and ℓ(4, 4) splittings within the kℓ = −2 and +4 sublevels, respectively. The two v3 = 2 substates are linked by the ℓ(2, 2)- and ℓ(2, −1)-type interactions, providing severe crossings, respectively, at K′ = 6 and near K′ = 24 on the v3 = 2+2 side. A model working in the D-reduction and including all these ℓ-type interactions could reproduce together 3695 nonzero weighted experimental data (NZW) through 33 free parameters with a standard deviation of σ = 0.357 × 10−3  cm−1. As for the ν1 + ν3 (E) combination band, about 3690 lines were assigned up to Kmax/Jmax = 45/55. Its v1 = v3 = 1 upper state (1931.577 5 cm−1) was treated using the same model recently applied to the v3 = 1 (E, 907.5413 cm−1) state. It yielded 21 free parameters through 3282 NZW experimental data, adjusted with σ = 0.344 × 10−3  cm−1 in the D-reduction. For the two excited states, the small and unobserved ℓ(0, 6) interaction was tested as useless. To confirm the adequacy of the vibrationally isolated models used, some other reductions of the Hamiltonian were tried. For the v3 = 2 state, the D-, L-, and LD-reductions led to similar σ’s, while the Q one was not successful. For the v1 = v3 = 1 state, the D- and Q-reductions gave comparable σ’s, while the QD-reduction was not as good. The corresponding unitary equivalence relations are generally more nicely fulfilled for the v3 = 2 state than for the v1 = v3 = 1 state. The three derivable anharmonicity constants in cm−1 are x33 = −4.1528, g33 = +1.8235 and x13 = −7.9652.  相似文献   

9.
The new double perovskite La3Co2TaO9 has been prepared by a solid-state procedure. The crystal and magnetic structures have been studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD) data. Rietveld refinements were performed in the monoclinic space group P21/n. The structure consists of an ordered array of alternating B′O6 and B″O6 octahedra sharing corners, tilted along the three pseudocubic axes according to the Glazer notation abc+. Rietveld refinements show that at RT the cell parameters are a=5.6005(7) Å, b=5.6931(7) Å, c=7.9429(9) Å and β=89.9539(7)°, and the refined crystallographic formula of this “double perovskite” can be written as La2(Co)2d(Co1/3Ta2/3)2cO6. Magnetization measurements and low-temperature NPD data show that the perovskite is a ferromagnet with TC=72 K. At high T it follows the Curie–Weiss law with an effective magnetic moment of 3.82μB per Co ion which is very close to spin only Co2+ (HS).  相似文献   

10.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

11.
Perovskite-type La(Cr1−xMnx)O3+δ (0.0x1.0) was synthesized using a sol–gel process. The crystal structure of La(Cr1−xMnx)O3+δ changes from orthorhombic to rhombohedral at x=0.6. The Mn4+ ion content increases monotonically in the range 0.2x1.0. The magnetic measurement of La(Cr1−xMnx)O3+δ indicates that a Mn3+ ion is a high-spin state with (d)3(dγ)1. The variation of the average (Cr, Mn)-O distance is explained by ionic radii of the Cr3+, the Mn3+, the Mn4+ ions. Since the log σT–1/T curve is linear and the Seebeck coefficient (α) is independent of temperature, it is considered that La(Cr1−xMnx)O3+δ is a p-type semiconductor and exhibits the hopping conductivity.  相似文献   

12.
Yuhai Hu  Keith Griffiths   《Surface science》2009,603(17):2835-2840
NO dissociation and subsequent N2 production in the presence of co-adsorbed S18O2 and D2 on the surface of stepped Pt(3 3 2) were studied using Fourier transform infra red reflection–absorption spectroscopy (FTIR-RAS) combined with thermal desorption spectroscopy (TDS). Reduction of NO by D (D2 is adsorbed dissociatively on Pt surfaces) proceeds to a limited extent, because this reaction is rate-controlled by NO dissociation and the supply of D atoms at the higher surface temperatures at which NO dissociation becomes significant (350 K and higher). NO–D reaction is suppressed in the presence of S18O2, depending significantly on the S18O2 coverage and the competition between the reactions NO–D and S18O2–D. When the supply of D2 is limited, e.g., 0.1 L in this study, the presence of S18O2 suppresses the NO–D reaction. With a sufficient supply of D2, e.g., 0.4 L and higher, D-atom competing reactions do not play a role any more because the reactions of both NO and S18O2 with D proceed only to a very limited extent. As such, generation of O atoms from S18O2 dissociation is the main reaction that leads to the suppression in NO dissociation and consequently, N2 production.It is also concluded that the presence of S18O2 does not seriously poison the active sites on the Pt surface, providing that there is a sufficient D supply to remove O atoms from both NO dissociation and S18O2 dissociation.  相似文献   

13.
The high-resolution infrared spectrum of HCF3 was studied in the ν6 fundamental (near 500 cm−1) and in the 2ν6 overtones (near 1000 cm−1) regions. The present study reports on the analysis of the hot bands in the ν6 region, as well as the first observation and assignment of the 2ν62 perpendicular band. Using ν6, 2ν6±2ν6±1 and 2ν62 experimental wavenumbers, accurate coefficients C0 and DK0 of the K-dependent ground-state energy terms were obtained, using the so-called “loop method.” Ground-state energy differences Δ(K,J)=E0(K,J)−E0(K−3,J) were obtained for K=3–30. A least-squares fit of 81 such differences gave the following results (in cm−1): C0=0.1892550(15); DK0=2.779(26) × 10−7.  相似文献   

14.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

15.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

16.
Tb3+-doped Sr3(PO4)2 phosphor was prepared by a sol-gel combustion method. A trigonal structure having Sr and O atoms occupying two different lattice sites were obtained. Scanning Auger nanoprobe was used to analyze the morphology of the particles. Photoluminescence (PL) and cathodoluminescence (CL) properties of Sr3(PO4)2:Tb powder phosphors were evaluated and compared. In addition, the CL intensity degradation of Sr3(PO4)2:Tb was evaluated when the powders were irradiated with a beam of electrons in a vacuum chamber maintained at an O2 pressure of 1 × 10−6 Torr or a background pressure of 1 × 10−8 Torr O2. The surface chemical composition of the degraded powders, analyzed by X-ray photoelectron spectroscopy (XPS), suggests that new compounds (metal oxides) of strontium and phosphorous were formed on the surface. It is most likely that these compounds contributed to the CL intensity degradation of the Sr3(PO4)2:Tb phosphors. The CL properties and possible mechanism by which the new metal oxides were formed on the surface due to a prolonged electron beam irradiation are discussed.  相似文献   

17.
The relaxation times of the 1H and 133Cs nuclei in CsH3(SeO3)2 crystals were investigated using FT NMR. The 133Cs spectrum does change from seven resonance lines to one resonance line near Tm (=350 K). The presence of only one 133Cs signal is due to the liquid state resulting from the melting of the crystal. The variation in the separation of the 133Cs resonance lines with temperature indicates that the EFG at the Cs sites produced by the (SeO3)2− groups varies with temperature, which in turn means that the atoms neighboring 133Cs are displaced. And, the T1 for 133Cs is very long and undergoes significant changes near Tm. The change in the temperature dependence of T1 at Tm for the 133Cs nuclei coincides with the melting temperature. These results are compared with those obtained for MH3(SeO3)2 (M=Na, K, and Cs) crystals.  相似文献   

18.
The action of the monovalent M+ cations on the luminescent properties of the mixed M x (1) M 1-x (2) UO2(NO3)3 crystals, where M is Na, K, Rb, Cs, or NH4 , has been investigated. It has been established that the spectral positions of the bands of vibronic transitions depend linearly on the ratio between the concentrations of the M(10) and M(2) cations. It is shown that the crystals considered are composed of l[RbUO2(NO3)3]n[CsUO2(NO3)3] clusters, where l/n = x/(1 - x). The spectral regularities revealed are determined by the partial contributions of the M(1) and M(2) cations to their combined, polarizing action on the uranyl complex and are explained by the ligand nature of its highest occupied molecular orbital.Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 71, No. 6, pp. 827–830, November–December, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

19.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

20.
The p(O2)–Tδ diagram of perovskite-type SrCo0.85Fe0.10Cr0.05O3−δ was determined by the coulometric titration technique in the temperature range 770–1250 K at oxygen partial pressures from 8 10−10 to 0.5 atm. Stability of the cubic perovskite phase of SrCo0.85Fe0.10Cr0.05O3−δ, existing down to the oxygen pressures of 10−3–10−5 atm, was found to be slightly higher than that of SrCo0.80Fe0.20O3−δ, probably due to stabilization of oxygen octahedra neighboring Cr4+ cations. When the oxygen nonstoichiometry of the Cr-containing perovskite decreases from 0.47 to 0.38, the partial molar enthalpy and entropy for overall oxygen incorporation reaction vary in the ranges −165 to −60 kJ mol−1 and 90 to 150 J mol−1 K−1, respectively. Within the stability limits of the single perovskite phase, the p(O2)–Tδ diagram can be adequately described by equilibrium processes of oxygen incorporation, cobalt disproportionation and interaction of cobalt and iron cations, with the thermodynamic functions independent of defect concentrations. Increasing grain size in SrCo0.85Fe0.10Cr0.05O3−δ ceramics from submicron size to 100–200 μm has no effect on the oxygen thermodynamics. The two-electrode coulometric titration technique, based on the alternate use of electrodes for oxygen pumping and e.m.f. measurements, is described and verified by studying oxygen nonstoichiometry of La0.3Sr0.7CoO3−δ and PrOx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号