首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
针对可调谐半导体激光吸收光谱技术(TDLAS)需要在整个谱线上扫描导致扫描过程中可能存在其他谱线干扰以及测量速度较慢的问题,提出了固定波长激光直接吸收测量方法。该方法采用固定波长下的直接吸收计算气体浓度,完全避免了谱线干扰的问题,并且提高了测量速度,尤其适合于动态燃烧化学反应的研究。通过在气体吸收池中对不同工况下的CO气体的温度以及浓度进行了测量,验证了方法的准确性,说明这种固定波长激光直接吸收测量方法同TDLAS方法一样可以应用于气体浓度和温度的测量。  相似文献   

2.
李金义  杜振辉  齐汝宾  徐可欣 《光学学报》2012,32(1):130004-311
针对当前可调谐半导体激光器吸收光谱(TDLAS)技术中调谐范围、调谐时间以及系统复杂性方面存在的不足,提出了利用激光器模块中的热电制冷器(TEC)和负温度系数(NTC)热敏电阻等元件对激光二极管(LD)进行温度宽谱调谐的方法,并在快速温度调谐过程中精确计算激光器的辐射波长。利用温度调谐二极管吸收光谱技术在3s的时间内测得了CO2气体在6320~6336cm-1波段的高分辨率吸收光谱。在此波段共测得8个较强吸收线。将得到的光谱参数与HITRAN 2008中的数据比较,吸收线位置、线强以及半峰全宽(FWHM)的偏差分别小于1%,3%以及6%。另外,测得的14条较弱的吸收谱线也与谱库中的谱线参数吻合。  相似文献   

3.
可调谐半导体激光吸收光谱(TDLAS)是一种具有高灵敏度、高分辨率和快速响应等特点的气体测量技术,已广泛用于大气痕量气体的测量以及工业有毒有害废气诊断和天然气泄漏检测。分布反馈式(DFB)激光器具有窄线宽和可调谐特性,并且能够精确让输出波长扫描单根气体吸收线,使得TDLAS技术能实现高灵敏气体浓度检测。介绍了在线式波长调制二次谐波(WMS-SH)气体检测技术,讨论了基于最小二乘法气体浓度反演算法,通过修正式加权滑动平均滤波对浓度信号进行了数字滤波处理,系统实现了不大于1 s的系统响应时间,提高了信噪比和系统的检测灵敏度,并在天然气处理厂实时硫化氢检测中得到了应用。  相似文献   

4.
气体的特征吸收频率可以通过红外光谱技术进行提取,但以可调谐激光吸收光谱法(TDLAS)为标志的气体光谱检测技术难以兼顾宽波段与高精度。因此,高集成度、高速度和高稳定性的多组分痕量气体的检测技术一直是科研界研究的热点。为了拓宽红外激光器检测的范围,本项目研发了中心波长分别为1 543、 1 579、 1 626、 1 653、 1 690与1 742 nm波段可调谐的多通道、可调频分布式反馈(DFB)激光器作为光源。利用MEMS-FPI片上光谱芯片探测带宽窄(约5 nm)、工作波长可精准调控、滤波效率高等一系列优势,实现了与多波长红外激光器的同步探测,完成多种混合气体的稳定高精度的识别与浓度检测,有效抑制了背景气体的相互干扰。该系统采用可寻址的MEMS-FPI光谱芯片的多通道波长调制(WMS)技术,通过单路锁相放大电路分别对不同气体吸收谱线的二次谐波(2f)信号进行解调与数字采集。实现了甲烷(CH4),硫化氢(H2S),乙烯(C2H4)等七种气体标志物的快速痕量级检测。能够兼顾多组分识别与低气体检测下...  相似文献   

5.
为了对痕量甲烷(CH4)进行非接触式检测,采用可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)的检测技术,利用CH4位于中红外波段1 332.8cm-1吸收谱线,设计并研制出痕量CH4检测仪。该仪器使用中心波长为7.5μm的中红外量子级联激光器(QCL),通过调谐系数-0.2cm-1·A-1,采用固定工作温度调节其注入电流(0.6~1.6 A)的方式使其发光光谱扫描CH4气体吸收谱线(1 332.8cm-1)。在光学结构方面,该仪器采用光程为76m的herriott长光程密闭气体吸收气室,配合差分检测光路,降低了由激光光源波动引起的噪声,确保对痕量CH4进行检测。实验中,实现了40×10-9最低检测下限,检测结果的相对误差为0.09%,稳定度优于2.8%,验证了该仪器的可行性。  相似文献   

6.
可调谐半导体激光吸收光谱技术(tunable diode laser absorption spectroscopy, TDLAS)是利用二极管激光器的波长调谐特性,获得被选定的待测气体特征吸收线的吸收光谱,从而对待测气体进行定性或定量分析。它具有高灵敏、高分辨以及快速检测等特点,已经广泛用于大气中多种痕量气体的检测以及泄漏气体的检测,也是在燃烧环境下对气体进行非侵入式实时测量的理想方法。TDLAS技术与开放式的多次反射池相结合,并利用自平衡探测加波长调制的新型检测方法,测量了酒精喷灯燃烧过程中产生的CO浓度,从测量结果中发现酒精喷灯火焰中CO的浓度成一定的周期性,并且得到火焰中CO的平均浓度为49.4(10-6体积比)。实验结果表明利用开放式多次反射池,结合自平衡探测加波长调制探测的新方法,满足了酒精喷灯燃烧过程中CO检测的需要,此系统为发展基于TDLAS的燃烧在线诊断技术奠定了基础。  相似文献   

7.
为了测量半导体激光器在电流调谐下的动态波长,提出了基于光纤延时自外差法的测量方案,阐述了测量原理,研究了拍频与动态波长的递推关系。应用该实验系统测量了分布反馈式半导体激光器调谐的动态波长特性,与由光谱仪测量的稳态波长特性比较。结果表明,动态波长与稳态波长随电流变化特性有着类似的非线性规律,在20~100 mA调谐范围内二者差异小于0.002 nm。此外,通过气体CO2的两条吸收谱线与HITRAN谱库中标准吸收线位置比对,辨识出半导体激光器调谐的动态波长,该辨识出的动态波长值与由延时自外差法推算出的动态波长值比较,二者误差为1 pm,进而验证了该测量系统的可靠性。  相似文献   

8.
CH4气体的精准检测对防止矿井瓦斯爆炸,确保安全生产至关重要。目前基于可调谐半导体激光吸收光谱技术(TDLAS)存在因温度变化导致气体浓度测量误差较大。探究了基于TDLAS的CH4气体检测系统与温度补偿方法,分析温度对CH4气体吸收谱线的影响,通过算法补偿模型消除环境温度对CH4气体检测的影响。依据TDLAS技术原理及相关理论,对系统发射单元、吸收池、信号接收单元、数据处理单元进行设计,搭建了基于TDLAS技术的CH4气体浓度检测系统,实验检测了不同环境温度(10~50 ℃)时0.04%CH4气体浓度,分析温度变化对CH4气体在波长为1.653 μm处吸收谱线强度和半宽度的影响。为消除温度对CH4气体检测的影响并提高补偿效果,采用粒子群优化算法(PSO)优化BP神经网络(BPNN)的最佳权值和阈值,建立CH4气体的PSO-BP温度补偿模型,克服了BP神经网络收敛速度慢、易陷入局部最优的缺点。结果表明:(1)基于TDLAS的CH4气体检测浓度随环境温度升高而下降,整个实验温度内相对误差范围为4.25%~12.13%,不同环境温度下CH4气体检测浓度与温度之间的关系可用一元三次多项式表示;(2)CH4气体的吸收强度和半宽度随着温度的升高而下降,与温度变化之间的关系为单调递减函数,温度对CH4气体吸收谱线强度的相对变化率大于吸收谱线半宽度的相对变化率,CH4气体吸收谱线的强度更容易受温度变化的影响;(3)BP神经网络和PSO-BP模型测试样本的绝对平均误差(MAE)分别为12.88%和1.81%,平均绝对百分比误差(MAPE)分别为2.3%和0.3%,均方根误差(RMSE)分别为15.96%和2.69%,相关系数R2分别为0.980 6和0.999 6。通过建立PSO-BP温度补偿模型,补偿效果大部分分布在±1.0%的误差范围内,MAE,MAPE,RMSE和R2等评价指标均大幅度提升,对提高TDLAS技术在矿井CH4的精准检测具有一定的参考意义。  相似文献   

9.
采用窄线宽、边模抑制高的DFB激光器研制一套开放型TDLAS波长调制技术气体检测装置.选取2004 nm处CO2分子吸收峰作为吸收谱线,采用锁相放大器进行调制、解调后的二次谐波信号幅值检测气体浓度大小.设计基于开放环境中的Herriott型气体吸收池,使用ZEMAX非序列模式进行吸收池仿真,光线追迹后理论光程可达到13...  相似文献   

10.
调谐半导体激光吸收光谱自平衡检测方法研究   总被引:12,自引:0,他引:12  
可调谐半导体激光吸收光谱技术(TDLAS)是利用半导体激光器的波长调谐特性,扫描待测气体特征吸收线,从而获得待测气体的浓度信息。基于可调谐半导体激光吸收光谱的自平衡检测方法能够有效地消除激光器光强波动等共模噪声和其他同性干扰的影响。实验表明自平衡检测方法可以获得较理想的结果,检测限低于体积比1.2×10-6,与直接吸收光谱法相比降低了一个数量级。自平衡检测电路简单,自带的电子增益补偿机制能够自动进行平衡探测,该方法不用加信号调制和锁相放大器,直接探测待测气体的吸收光谱,从而降低成本,减小系统装置体积,易于集成为便携式痕量气体检测仪。  相似文献   

11.
基于可调谐半导体激光吸收光谱的氧气测量方法的研究   总被引:3,自引:0,他引:3  
O2是工业过程中广泛应用的重要气体, 在工业生产环境下实现O2浓度的快速在线检测对提高燃烧效率和节能减排具有重要的意义。可调谐半导体激光吸收光谱谐波探测技术是一种具有高灵敏、高选择性、快速响应等特点的气体检测新技术,该技术利用了半导体激光器的可调谐和窄线宽特性,通过精心选择待测气体的某条吸收线可排除其他气体的干扰,实现待测气体浓度的高灵敏快速在线检测。文章以可调谐分布反馈(Distributed feedback, DFB)半导体激光器作为光源,通过波长调制方法对760 nm附近氧气某一吸收线的二次谐波信号测量,从而实现了对氧气浓度的快速在线检测。系统指标达到:检测范围0.01%~20%;检测精度0.1%;长期稳定性1%。  相似文献   

12.
可调谐半导体激光吸收光谱技术是一种具有高灵敏、高选择性、快速响应等特点的气体检测新技术,它利用了半导体激光器的可调谐和窄线宽特性,通过精心选择待测气体的某条吸收线可排除其它气体的干扰实现待测气体浓度的高灵敏快速在线检测。讨论在工业环境下气体检测系统中数据采集与信号处理方法,分析了实验结果。在工业数据采集和处理系统中如何提高实时性和通用性,是设计者首要解决的问题。在VC++环境下,多线程技术和面向对象方法,实现了实时数据采集,不存在采集丢点问题,成功地实现了数据的准确完整性与实时性,并且在新的数字信号处理中提高了系统的测量精度、重复性和稳定性,满足了工业气体在线检测的需要。  相似文献   

13.
近红外波段CO高灵敏检测的稳定性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
夏滑  吴边  张志荣  庞涛  董凤忠  王煜 《物理学报》2013,62(21):214208-214208
本文采用中心波长1566.64 nm的DFB激光器, 结合光程长度为56.7 m 的多次反射池, 对不同浓度的CO气体进行了长时间测量, 分析了系统的稳定性和线性度. 通过计算Allan方差, 预测了在积分时间为30 s时, 系统检测极限为0.25 ppmv, 基本上实现了在近红外波段CO的高灵敏检测. 关键词: 可调谐半导体激光吸收光谱 多次反射池 CO检测 Allan方差  相似文献   

14.
何莹  张玉钧  王立明  尤坤 《光学技术》2012,38(4):421-426
氨气是大气中含量最为丰富的碱性痕量气体,氨浓度检测是近年来环境和农业领域的一个重要研究方向。利用可调谐半导体激光吸收光谱(TDLAS)技术,结合波长高频扫描技术和多次反射池技术设计了氨气激光在线检测系统。通过激光中心波长锁定、背景基线拟合、吸收线型拟合、光强归一化和线性最小二乘拟合算法实现了氨浓度的精确反演。分析了系统性能,在24.32m光程下系统检测限为0.157mg/m3。使用该浓度反演方法实现了氨气的高灵敏、高精确在线检测。  相似文献   

15.
可调谐半导体激光吸收光谱遥测二氧化碳通量的研究   总被引:1,自引:0,他引:1  
可调谐半导体激光吸收光谱技术(TDLAS)具有高分辨率、高灵敏度以及响应时间快等优点.以室温下工作的近红外可调谐半导体激光器为光源,通过波长调制方法对1 578 nm附近CO2气体吸收线的二次谐波信号测量,结合双开放光路技术,实现对不同高度层面700多米长光程范围内CO2气体浓度的快速在线检测.结合大口径闪烁仪测量的莫宁-奥布霍犬长度和特征速度,通过经验公式计算得到CO2气体的通量在-60~60 mg·m-2·s-1范围内波动.实验数据与涡动相关比较表明,两者数据整体变化趋势一致,该方法可以获得较理想的结果.突破了目前对近地面痕量气体通量的监测只能提供局地结果的现象,使大面积范围内痕量气体通量的测量成为可能.  相似文献   

16.
The development of a continuous wave (CW), thermoelectrically cooled (TEC), distributed feedback (DFB) laser diode based spectroscopic trace-gas sensor for ultra-sensitive and selective ethane (C2H6) concentration measurements is reported. The sensor platform used tunable diode laser absorption spectroscopy (TDLAS) based on a 2f wavelength modulation (WM) detection technique. TDLAS was performed with a 100 m optical path length astigmatic Herriott cell. For an interference free C2H6 absorption line located at 2976.8 cm−1 a 1σ minimum detection limit of 240 pptv (part per trillion by volume) with a 1 second lock-in amplifier time constant was achieved. In addition, reliable and long-term sensor performance was obtained when operating the sensor in an absorption line locked mode.  相似文献   

17.
可调谐半导体激光吸收光谱作为一种高灵敏度、高选择性、非侵入的痕量气体实时检测技术,已在大气监测、工业控制等方面得到广泛应用。采用一种新型宽带可调谐的SG-DBR半导体激光器(可调谐范围1 520~1 570 nm)作光源,并通过自编程序对该激光器设定了18个通道,输出波长分别对应CO,CO2以及H2O的吸收谱线中心位置,设计和构建了一个基于近红外可调谐半导体激光吸收光谱的多组分气体光谱测量系统,描述了相关的光学系统设置,结合波长调制(wm)的二次谐波技术测量其中14个通道(分别对应CO和CO2的吸收谱线)的吸收光谱,系统获得的CO和CO2峰值吸收探测极限能够达到10-5。实验结果验证了SG-DBR激光器在波长调制吸收光谱多组分气体检测领域的可行性。在实际应用过程中使用单个SG-DBR激光器可以实现多组分气体的同时测量,有效降低设备成本和系统复杂性。  相似文献   

18.
TDLAS(可调谐半导体激光吸收光谱)技术以其分子光谱高选择性、速度快、灵敏度高、非接触测量等难以取代的优势,成为燃烧过程诊断等应用的首选,可以有效用于氧气测量。DFB(分布反馈)半导体激光器以其体积小、功耗低、寿命长、线宽窄、波长可调谐等优点成为TDLAS系统的主要选择,而其调谐特性是制约系统测量性能的关键因素。根据TDLAS氧气测量系统工作要求,采用一种简单易行的实验方法对系统中用到的764 nm DFB激光器的电流波长、温度波长和电流功率等重要调谐特性进行了测试和分析,发现出射光谱窄线宽、高边模抑制比和宽波长可调谐范围等特点明显,电流波长调谐曲线近似但并非严格线性、调谐速率约0.023 nm·mA-1,温度越高阈值电流越大、PI曲线也并非严格线性,温度调谐特性曲线线性较好、波长温度调谐速率基本保持恒定约为0.056 nm·℃-1。可见各种调谐曲线的非线性失真比较明显,影响氧气测量精度。温度调谐非线性可以通过温控精度的提高来消除,电流功率调谐非线性可以通过设置参考光强来消除。为了进一步解决电流波长调谐非线性问题,根据DFB半导体激光器的调谐机理和电流波长测试结果的多项式拟合,考虑通过DA控制注入电流的方式对电流波长调谐非线性进行补偿。这种方法针对不同激光器只需在系统初次工作之前进行一次多项式拟合,方案合理、实现简单且不影响测量过程。实验证明,补偿之后的λI曲线线性拟合残差小于1 pm,远小于补偿前的22 pm,效果明显,为氧气各种参数TDLAS精确测量和反演提供了依据。  相似文献   

19.
We present a new, very simple to use and very easy to align, inexpensive, robust, mono-static optical hygrometer based on tunable diode laser absorption spectroscopy (TDLAS) that makes use of very inexpensive reflective foils as scattering targets at the distant side of the absorption path. Various alternative foils as scattering targets were examined concerning their reflective behaviour and their suitability for TDLAS applications. Using a micro prismatic reflection tape as the optimum scattering target we determined absolute water vapour concentrations employing open path TDLAS. With the reflection tape being in a distance of 75?cm to 1?m (i.e., absorption path lengths between 1.5 and 2?m) we detected ambient H2O concentrations of up to 12,300?ppmv with detectivities of 1?ppm which corresponds to length and bandwidth normalized H2O detection limits of up to 0.9?ppmv?m/ $ \sqrt {\text{Hz}} $ , which is only a factor of 2 worse than our previous bi-static TDLAS setups (Hunsmann, Appl. Phys. B 92:393?C401, 1). This small sensitivity disadvantage is well compensated for by the simplicity of the spectrometer setup and particularly by its extreme tolerance towards misalignment of the scattering target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号