首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
梁振浪  杨耀  李豪  刘丽英  施志聪 《电化学》2021,27(2):177-184
以聚丙烯腈、石油沥青和花生壳为前驱体,在1200℃下碳化制备三种不同的硬碳材料.通过扫描电子显微、X射线衍射、氮气吸附/脱附测试和拉曼光谱等方法探究不同前驱体所制备的硬碳材料的表面形貌和物相结构.通过恒流充放电测试考察了这三种硬碳负极材料的电化学性能.结果表明,花生壳基硬碳的初始放电比容量最高,但首圈库仑效率最低,石油...  相似文献   

2.
石油沥青质在烃中的稳定性研究   总被引:2,自引:0,他引:2  
石油是以沥青质为分散相的非水胶体体系[1,2 ] 。研究认为 ,石油中沥青质的沉淀和絮凝 ,对石油开采及输送有十分重要的影响 [3]。提高沥青质在石油中的胶体稳定性 ,可强化石油加工过程中的重油减压蒸馏、催化裂化、减粘裂化及延迟焦化等过程[1,2 ] ,是提高炼厂轻质油收率、改善产品质量、提高综合经济效益的重要途径。国外关于沥青质在烃类介质中的稳定性研究报道较多 ,大多侧重于胶质对沥青质的稳定作用。由于胶质和沥青质均为由多种复杂结构分子组成的混和物 ,探讨胶质对沥青质的稳定机理极端困难 ,Chia-Lu Chang[4 ]等定量讨论了沥青质…  相似文献   

3.
钾离子电容器是一种新型的电化学储能器件,碳基材料被认为是最有前途的储钾候选材料之一.然而,K+半径较大使得迁移速率缓慢,脱嵌过程中材料的结构易破坏,导致性能显著下降.因此,开发出低成本的碳材料来适应K+扩散的热力学与动力学需求,已成为当前发展的瓶颈.煤沥青是煤焦油经蒸馏提取液体馏分后得到的残余物,它的组成主要为稠环芳烃,具有高的含碳量、可塑性好、资源集中、价格低廉等显著优点,是一种优质的碳基材料前驱体.鉴于此,本工作采用煤沥青作为碳源、聚四氟乙烯为氟源,氯化钠为模板剂,通过直接高温碳化的策略制备了氟氮共掺杂的多孔碳纳米片(FNCPC).研究表明,纳米片层的结构设计有效缩短了离子的传输路径, F、N共掺杂拓宽了碳的层间距,缓解了体积膨胀问题,并且形成更多的表面缺陷,可为K+的存储提供更多的反应活性位点.此外,电化学动力学分析和密度泛函理论(DFT)表明,FNCPC具备显著的赝电容特性和强的对K吸附能.得益于结构和化学性质的协同优化,FNCPC负极展现出优异的储钾能力(2 A·g–1电流密度下具有212.8 mAh·g–1的比容量)和循环稳定性....  相似文献   

4.
渣油、沥青等重质烃类经中温液相碳化得到的缩聚沥青是制取沥青碳纤维等新型碳材料的主要原料。为配合重质烃类的工业利用及其碳化机理的研究,测定沥青及缩聚沥青的分子量分布(MWD)十分必要。 在凝胶渗透色谱法(GPC)检测沥青类产品的文献中,围绕如何建立校准曲线的问题,提出了许多方法。诸如,与纯样所作的校准曲线为比较的测定相对值法,以  相似文献   

5.
以沥青为碳前驱物,通过加热分解法制备了具有不同热解碳含量的硅-热解碳-石墨复合材料,并测试及分析了材料的形貌、结构及电化学性能。结果表明,沥青质量在320~560℃的温度区间内迅速减小,沥青质量的减小是由于氢元素的去除。经过高温分解制得的热解碳与沥青的质量比率为65%。在硅-热解碳-石墨复合材料中,硅颗粒分散在石墨表面,热解碳覆盖在硅颗粒表面,热解碳增强了硅颗粒与石墨间的界面结合力。适当含量的热解碳增大了复合材料的放电比容量且改善了循环稳定性;过量的热解碳不能进一步提升复合材料的放电容量。  相似文献   

6.
基于KOH活化法,以纳米级片层多孔MgO为模板剂,制备大碳层间距的沥青基超级电容器用多级孔碳材料。考察了模板剂添加量对多孔碳材料孔分布、碳层间距等理化性能及电化学性能的影响。结果表明模板剂添加量为沥青质量的25%时,多孔碳材料比表面积、孔体积分别为2 634 m~2·g~(-1)、1.12 cm~3·g~(-1),碳层间距高达0.374 nm,用于超级电容器电极材料时,1和20A·g~(-1)电流密度下的比电容分别为338和277 F·g~(-1),经过10 000次循环恒电流充放电,1 A·g~(-1)下容量保持率为93.5%,展现了优异的电化学性能。  相似文献   

7.
封博谞  庄小东 《化学学报》2020,78(9):833-847
富碳型材料,包括纯碳材料的各种同素异形体、碳基骨架的稠环芳香分子、聚合物、框架材料等,已成为当今材料领域最重要的研究领域之一.在这些研究当中,很大一部分工作都是研究材料本身的结构与性质,而忽略了这些材料之间的内在联系.课本中的很多概念,如同分异构体、同素异形体和拓扑缺陷,已经无法用于深入理解种类和数量繁多的富碳型材料之间的构效关系.这就使得通过改变已知材料的有限结构来调控材料的性质变得工作重复而繁重,且基础理解受限于研究个体上.作者将从材料"熵"的概念入手,尝试理解富碳型材料之间熵的相对高低,并建议基于"介熵"的认识开发新型富碳型材料、开发新型介熵富碳型材料的全新性质.基于对具体的不同的新型富碳型材料的讨论,将"介熵"这一概念引入到同素异形体、同分异构体以及广泛存在于碳材料中的拓扑缺陷的理解上.类似富碳型材料的关系不再模糊地停留在几何结构层面上,为今后介熵富碳型材料及其他介熵材料的开发提供参考.  相似文献   

8.
原油是最复杂的化学体系之一,人们对原油这种复杂的胶态分散体及其稳定性的研究兴趣与日俱增,尤其是与石油稳定性密切相关的沥青质超分子聚集体。但人们对形成沥青质超分子聚集体的主要作用力长期以来颇有争议。本文重点介绍了石油组分及其模型化合物在溶液中形成超分子聚集体的超分子化学作用研究进展。通过实验方法和理论计算证明沥青质聚集体是沥青质分子间通过氢键、π-π堆积、偶极-偶极相互作用等多种分子间弱相互作用力协同作用形成的热力学稳定结构;合成具有沥青质结构特点的纯化合物,研究它们在溶液中的行为,是提高对沥青质在液态相中自缔合行为认识的有效方法;结合现阶段的研究状况,对石油组分模型化合物的超分子化学作用研究的发展前景进行了展望。  相似文献   

9.
多孔碳材料具有高的比表面积、可调控的物理化学性质、价廉易得等优点,在能源存储和转换、催化、吸附分离等领域展现出了巨大的应用前景.多孔碳材料的制备方法和前驱体的选择直接决定了其性能及使用范围.聚合物结构丰富,通过碳化不同结构的聚合物制备多孔碳材料是目前多孔碳材料的研究热点之一.本文详细综述了目前多孔碳材料的主要制备方法以及聚合物作为碳前驱体,其结构与多孔碳材料结构与性能之间的构效关系.最后,对多孔碳材料的未来发展方向做了进一步的展望.  相似文献   

10.
石墨相氮化碳是类石墨层状聚合物材料,因其特殊的能带和电子结构,近年来成为功能材料研究领域的热点.液相合成法具有温和多变的特性,是石墨相氮化碳合成的重要途径.本文作者就现阶段液相介质合成氮化碳的主要方法进行了介绍,主要包括液相电沉积、脉冲激光烧蚀、溶剂热合成法等.介绍了不同液相介质和合成参数对制备氮化碳材料晶型、形貌等的影响.同时就溶剂热合成氮化碳在光催化领域的研究进展进行了总结.在未来的研究中,液相合成法将极大的丰富氮化碳材料结构优化的途径,有助于推动多功能聚合物材料的深入研究.  相似文献   

11.
《化学分析计量》2013,(6):69-69
日本长崎综合科学大学的加藤贵副教授领导的研究小组发现,如果利用石油中含有的碳分子制成合成材料,有可能在-35℃实现超导传输。研究小组通过碳分子的结晶构造从理论上计算得出相关结果并阐述了新型超导合成材料的制作模型。  相似文献   

12.
超级电容器因其在电动车和便携式设备上巨大的应用潜力而受到广泛关注. 电极材料是超级电容器的关键组成部分, 决定了超级电容器性能的好坏. 近来大量研究以碳材料和过渡金属化合物作为电极材料. 然而, 碳材料电容值极小与过渡金属化合物导电性和稳定性差, 极大地限制了它们在超级电容器中的应用. 本综述重点介绍了我们课题组近年来在设计、可控制备及优化碳材料与过渡金属氧/氮化物电容性能的相关研究工作, 并讨论了材料构效关系及其调控机理. 最后对碳材料和过渡金属化合物作为电极材料的日后研究进行了展望.  相似文献   

13.
碳沥青中几种钒、镍矿物的发现和成因讨论   总被引:3,自引:0,他引:3  
本文通过光学鉴定和扫描电镜等分析测试手段,首次在广西上林、河池碳沥青中发现粒度在1—5微米左右的微粒分散状针镍矿、紫硫镍矿、六方氧钒矿、黑铁钒矿。根据碳沥青的产出条件和结构构造特征,认为碳沥青。和钒、镍的物质来源都是来自本层下部中泥盆统的黑色炭质、钙质生油页岩和泥灰岩。并且认为碳沥青中分散的几种钒、镍矿物,是在油气演化晚期阶段从合钒、镍卟啉等金属-有机化合物的原油沥青经热变质作用分解、转化而来的。  相似文献   

14.
纳米碳材料非金属催化的研究进展   总被引:1,自引:0,他引:1  
孙晓岩  王锐  苏党生 《催化学报》2013,34(3):508-523
纳米碳材料直接作为催化剂的非金属碳催化是目前材料科学与催化领域的前沿方向之一.相对于传统金属催化剂,纳米碳材料催化剂具有高效环保、低能耗、耐腐蚀等优点.在烃类转化、化学品合成、能源催化等领域表现出优异的催化性能和发展潜力.综述了近年来纳米碳非金属催化研究的最新进展,主要包括新型纳米碳材料的表面性质、催化特性、反应机理和宏观制备等关键问题,并对纳米碳催化存在的挑战和前景进行了展望.  相似文献   

15.
模板法制备中孔碳材料   总被引:1,自引:0,他引:1  
模板法为各种中孔碳材料的可控和定向合成开辟了一条新的技术途径,近几年来已经成为国内外材料制备领域研究的热点之一.中孔碳材料具有孔道排列规则有序、孔径分布窄和比表面积高等特点而被广泛应用于气体分离、催化剂载体、吸附、色谱分析、超级电容器以及燃料电池等很多方面.本文综述了近几年来国内外模板法制备中孔碳材料的研究进展,重点阐述了模板法的种类,中孔碳材料的合成机理、方法以及中孔碳材料在生物、催化和电子能源等领域的应用,并分析了模板法制备中孔碳材料的发展趋势,认为中孔分子筛模板法和软模板法是未来制备中孔碳材料的重要方向.  相似文献   

16.
《电化学》2017,(5)
超级电容器因其在电动车和便携式设备上巨大的应用潜力而受到广泛关注.电极材料是超级电容器的关键组成部分,决定了超级电容器性能的好坏.近来,大量研究以碳材料和过渡金属化合物作为电极材料.然而,碳材料电容值极小与过渡金属化合物导电性和稳定性差,极大地限制了它们在超级电容器中的应用.本综述重点介绍了作者课题组近年来在设计、可控制备及优化碳材料与过渡金属氧/氮化物电容性能的相关研究工作,并讨论了材料构效关系及其调控机理.最后,对碳材料和过渡金属化合物作为电极材料的日后研究进行了展望.  相似文献   

17.
杂原子掺杂的碳材料具有成本低、导电性高、耐酸碱性强等优点,被直接或作为载体材料广泛应用于各类电催化反应.由于杂原子和碳原子之间的电负性差异很大,人们通常将杂原子掺杂的碳材料析氧(OER)活性提高的原因归于杂原子诱导的碳原子上电荷的重新分布.然而,硫(2.58)与碳(2.55)的电负性几乎相同,说明硫掺杂不会导致碳上显著的电荷重新分布.因此,硫掺杂碳材料的活性来源可能与其他元素掺杂的碳材料不同.目前,部分研究表明,硫掺杂是通过改变碳基体的自旋密度而非电荷密度来优化反应活性.还有一些研究将活性的增强归因于硫掺杂的碳材料中存在的硫杂环结构.然而,上述结论都是基于硫掺杂碳材料本身可以在电催化中保持稳定这一前提下提出的,材料本身电催化过程中可能发生的结构和组分转变,尤其是在强氧化OER条件下发生的转变被忽略了.硫杂环是一种具有还原性的硫物种,在强氧化的OER条件下应当同样发生氧化.因此,硫掺杂的碳材料及其作为金属材料的载体在催化OER时的活性起源和催化机制仍然不明确.本文研究了硫掺杂的石墨薄片(S-GP)在碱性OER过程中的活化以及相应的结构演化过程.连续的电化学线性扫描结果表明, S-GP可以...  相似文献   

18.
沥青质是造成渣油加氢过程中结焦和催化剂失活的主要因素,深入研究渣油加氢转化前后沥青质的分子组成变化对于改进渣油加氢工艺有着重要的指导意义.本文采用傅里叶变换离子回旋共振质谱仪(FT-ICR MS)研究了塔河减渣加氢转化过程中沥青质组分的分子组成差异.为了减少沥青质分子之间的相互干扰和抑制,通过固相萃取技术对渣油加氢前后得到的沥青质进行了分离,并对比了其中主要化合物在分离前后的详细分子组成.利用固相萃取技术分离之后,还可以对加氢后沥青质中微量的卟啉钒化合物进行富集,并研究了在渣油加氢前后沥青质中的卟啉钒化合物的分子组成变化.研究表明,对沥青质样品进行更细致的分离可以得到丰富、全面的沥青质分子组成数据,为石油加工提供更有价值的分子结构信息.  相似文献   

19.
铂基催化剂是目前氢氧燃料电池中实际应用的阴极氧还原催化剂,由于铂昂贵的价格以及稀缺性,开发非贵金属氧还原催化剂对于氢氧燃料电池的规模化应用非常必要.碳基非贵金属氧还原催化剂,包括金属-氮掺杂碳(M–N–C)材料和非金属杂原子掺杂碳材料,是目前最重要也是研究最广泛的两类非贵金属氧还原催化剂.对其活性位点的认知是研究热点之一,也是明显提高性能和宏量制备的关键所在.对于金属-氮掺杂碳催化剂,目前受到广泛认可的活性位点包括:M–N_x/C(x=1,2,3,4)、Nx–C、包覆的纳米金属粒子活化的碳层等.对于非金属杂原子掺杂碳材料(如氮掺杂碳材料),氮原子毗邻的碳原子一般被认为是活性位点.但由于原料本身、制备过程等因素,可能引入痕量的金属元素,严格意义上的非金属杂原子掺杂碳材料难以制备,使得明确其活性位点非常困难.结合本研究组在该领域的工作,本文介绍了当前上述两类催化剂在研究方面的进展,总结分析了几种对活性位点探索和确认的主流认识,以期有助于碳基非贵金属氧还原催化剂的进一步研究.  相似文献   

20.
钠离子电池具有资源丰富和成本低等优势,在大规模储能领域受到广泛的关注.开发具有高比容量和长循环稳定性的电极材料是钠离子电池走向应用的关键.碳材料作为钠离子电池的负极材料,具有可调控性高与稳定性好等优势,具有应用潜力.目前,研究较为广泛的碳材料主要包括石墨、无定形碳、杂原子掺杂碳、生物质合成碳,但这些碳负极材料存在着钠-石墨化合物热力学不稳定、较大的体积变化以及初始库伦效率低等问题,制约了钠离子电池的发展与广泛应用.通过对碳材料的结构进行修饰改性及将其与电解液进行匹配,可以有效提升其储钠性能.本文对这几类碳材料的结构特点、电化学性能、储钠机理、面临的问题、改进方法以及商业化前景进行总结,为钠离子电池碳负极材料的发展提供新见解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号