首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone tissue engineering scaffolds necessities appropriate physicochemical and mechanical properties to support its renewal. Electrospun scaffolds have been used unequivocally in bone tissue restoration. The main intention of this research is to develop electrospun polyurethane (PU) scaffold decorated with metallic particles and essential oil with advanced properties to make them as a putative candidate. The nanocomposite scaffold exhibited appropriate wettability and suitable fiber diameter compared to the polyurethane scaffold. Interaction of the added constituents with the polyurethane was corroborated through hydrogen bonding formation. Tensile strength of the composites was enhanced compared to the polyurethane scaffold. Thermal analysis depicted the lower weight loss of the composite scaffold than the pristine PU. Blood coagulation was significantly delayed and also the composite surface rendered safe interaction with red blood cells. In vitro toxicity testing using fibroblast cells portrayed the nontoxic behavior of the fabricated material. The above-said advanced properties of the composite scaffold can be warranted for bone tissue engineering application.  相似文献   

2.
Scaffolds used in skin tissue engineering must mimic the native function of the extracellular matrix (ECM) and facilitate the fibroblast cell response for new tissue growth. In this study, a novel dressing scaffold based on polyurethane (PU) with sesame oil, honey, and propolis was fabricated by electrospinning. Scanning electron microscopy (SEM) images showed that the diameter of the electrospun scaffolds decreased by blending sesame oil (784?±?125.46?nm) and sesame oil/honey/propolis (576?±?133.72?nm) into the PU matrix (890?±?116.911?nm). Fourier infrared (FT-IR) and thermogravimetric (TGA) analysis demonstrated the formation of hydrogen bonds and interaction between PU and sesame oil, honey, and propolis. Contact-angle measurement indicated reduced wettability of PU/sesame oil scaffold (114?±?1.732) and improved wettability (54.33?±?1.528) in the PU/sesame oil/honey/propolis scaffold. Further, tensile tests and atomic force microscopy (AFM) analysis indicated that the fabricated composite membrane exhibited enhanced mechanical strength and reduced surface roughness compared to the pristine PU. The developed composite displayed less toxicity to the red blood cells (RBC’s) compared to the pristine PU. Cytotoxicity assay showed enhanced cell viability of HDF in electrospun scaffolds than pristine PU after 72?h culture. These enhanced properties of the developed scaffolds suggest the potential of utilizing them in skin tissue engineering.  相似文献   

3.
Physiochemical properties of the fabricated scaffolds play a crucial role in influencing the cellular response for the new tissue growth. In this study, electrospun polyurethane (PU) scaffolds incorporated with green synthesized nickel oxide nanoparticles and groundnut oil (GO) were fabricated using electrospinning technique. First, synthesis of nickel oxide (NiO) was done using leaf extract of Plectranthus amboinicus (PA) via microwave-assisted technique. Synthesized nanoparticles were confirmed through Energy-dispersive X-ray spectroscopy (EDX) analysis and size of the particles were in the range of 800–950?nm. Fiber morphology of the fabricated scaffolds was analyzed using scanning electron microscope (SEM) which showed decrease in fiber diameter for the fabricated composites compared to the pristine PU. The wettability studies showed an increase in contact angle for developed composites than the pure PU. Thermal analysis depicted an increase in thermal behavior for the PU/GO/NiO compared to the pristine PU. Surface roughness values were obtained through atomic force microscopy (AFM) which showed a decrease in roughness while adding GO and NiO to the PU. Finally, the fabricated composites showed enhanced deposition of calcium content than the pristine PU. These results corroborated that the developed composites have a significant effect on the fiber morphology, wettability, thermal behavior, surface roughness, and mineral deposition depicting its versatility for bone regeneration.  相似文献   

4.
The graphene‐based nanocomposites are considered as great candidates for enhancing electrical and mechanical properties of nonconductive scaffolds in cardiac tissue engineering. In this study, reduced graphene oxide‐silver (rGO‐Ag) nanocomposites (1 and 2 wt%) were synthesized and incorporated into polyurethane (PU) nanofibers via electrospinning technique. Next, the human cardiac progenitor cells (hCPCs) were seed on these scaffolds for in vitro studies. The rGO‐Ag nanocomposites were studied by X‐ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM). After incorporation of rGO‐Ag into PU nanofibers, the related characterizations were carried out including scanning electron microscope (SEM), TEM, water contact angle, and mechanical properties. Furthermore, PU and PU/nanocomposites scaffolds were used for in vitro studies, wherein hCPCs showed good cytocompatibility via 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assay and considerable attachment on the scaffold using SEM studies. Real‐time polymerase chain reaction (PCR) and immunostaining studies confirmed the upregulation of cardiac specific genes including GATA‐4, T‐box 18 (TBX 18), cardiac troponin T (cTnT), and alpha‐myosin heavy chain (α‐MHC) in the PU/rGO‐Ag scaffolds in comparison with neat PU ones. Therefore, these nanofibrous rGO‐Ag–reinforced PU scaffolds can be considered as suitable candidates in cardiac tissue engineering.  相似文献   

5.
The material surface must be considered in the design of scaffolds for bone tissue engineering so that it supports bone cells adhesion, proliferation and differentiation. A biomimetic approach has been developed as a 3D surface modification technique to grow partially carbonated hydroxyapatite (the bonelike mineral) in prefabricated, porous, polymer scaffolds using a simulated body fluid in our lab. For the rational design of scaffolding materials and optimization of the biomimetic process, this work focused on various materials and processing parameters in relation to apatite formation on 3D polymer scaffolds. The apatite nucleation and growth in the internal pores of poly(L-lactide) and poly(D,L-lactide) scaffolds were significantly faster than in those of poly(lactide-co-glycolide) scaffolds in simulated body fluids. The apatite distribution was significantly more uniform in the poly(L-lactide) scaffolds than in the poly(lactide-co-glycolide) scaffolds. After incubation in a simulated body fluid for 30 d, the mass of poly(L-lactide) scaffolds increased approximately 40%, whereas the mass of the poly(lactide-co-glycolide) scaffolds increased by about 15% (see Figure). A higher ionic concentration and higher pH value of the simulated body fluid enhanced apatite formation. The effects of surface functional groups on apatite nucleation and growth were found to be more complex in 3D scaffolds than on 2D films. Surprisingly enough, it was found that carboxyl groups significantly reduced the apatite formation, especially on the internal pore surfaces of 3D scaffolds. These findings are critically important in the rational selection of materials and surface design of 3D scaffolds for mineralized tissue engineering and may contribute to the understanding of biomineralization as well.SEM micrograph of a poly(L-lactide) scaffold.  相似文献   

6.
《Arabian Journal of Chemistry》2020,13(10):7418-7429
In the current study, a porous 3D scaffold using Gallium-Apatite/chitin/pectin (Ga-HA/C/P) nanocomposites scaffolds (NCS) were fabricated by freeze-drying process with applications in orthopedics (bone tissue engineering). Various NCSs (0%, 30%, 50 and 70%) were prepared and characterized for its chemical structure, crystalline phase, surface texture by using various techniques such as FT-IR, XRD and SEM-EDX, respectively. The analyses of physicochemical properties proved that the formulated scaffolds were highly porous, and mechanically stable with superior density. The nanocomposite scaffolds also presented with increased swelling ability, lower biodegradation rate and higher mechanical strength. Further, biocompatibility and cytotoxicity of Ga-HA/C/P nanocomposite scaffolds were studied using NIH3T3 cells and MG-63 cells revealed no toxicity and cells attached and proliferated on scaffolds. Further implantation of prepared NCS showed mature bone formation through formation of new bone cells and osteoblast differentiation. Also, Ga-HA/C/P nanocomposites scaffolds proved to be more effective than chitin-pectin composite scaffolds. Taking results together it can be inferred that the prepared nanocomposite scaffolds possesses the prerequisites and showed great potential for treating orthopedic applications.  相似文献   

7.
Highly branched polyurethane (PU) scaffolds that match mechanical properties are the preferred tissue engineering materials, which is composed of a multi‐hydroxyl‐terminated poly(butadiene‐co‐acrylonitrile) (THTPBA) prepolymer and poly(ethylene glycol) (PEG) via 1,6‐hexamethylene diisocyanate as anchor molecule. This combination is anticipated to influence or alter hydrophilicity or hydrophobicity, degradation and haemocompatibility of the PEG‐derived PUs. Hence, the surface properties, degradability, mechanical and biomedical properties of the PUs were scrutinized and assessed by FTIR, contact angles, gravimetry, stress‐strain measurement and haemolysis, platelet adhesion as well as methyl tretrazolium (MTT) assays. The experimental results indicated that the incorporation of THTPBA can mediate the degradation rate, which took place at the urethane or ester bonds in polymer chains. The haemolytic activity, platelet activation, and MTT investigations elicited that the component ratios of THTPBA to PEG had important influence on biomedical properties, including in vitro blood compatibility, cytotoxicity, and cell cycle or apoptosis of the PU scaffolds. The tensile stress‐strain investigations showed that the highly branched architecture offered high elastic modulus and mechanical strength. The novel PU scaffolds with highly branched architecture exhibited improved mechanical properties and biocompatibility as well as low toxicity by regulating proper component ratios, and are expected to be employed in tissue engineering, or as potential candidates for other blood‐contacting applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Oils play a putative choice for alleviating various symptoms associated with bone-related disorders. In this present study, polyurethane (PU) scaffold encompassing with Mahua oil (MO) and propolis (PP) were developed using the electrospinning technique. Morphological analysis showed the reduction in the diameter of the electrospun scaffold with blending of MO and MO/PP into the PU matrix. The strong interactions between PU, MO, and PP were evident through the infrared spectrum and thermal analysis. The wettability results showed the hydrophobic nature in electrospun PU/MO scaffold and hydrophilic behavior in electrospun PU/MO/PP scaffold. Mechanical testing indicated the enhancement in the strength of the PU due to the addition of MO and PP. Moreover, the fabricated scaffolds exhibited nontoxicity, low hemoglobin release and improved blood clotting time as evident in the coagulation studies. The cell proliferation studies showed the enhanced fibroblast cell adhesion in the developed nanocomposites than the pristine PU. Hence, the fabricated PU scaffolds blended with MO and PP having desirable properties can serve as a valuable candidate for bone tissue repair.  相似文献   

9.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

10.
A high incidence of bone defects and the limitation of autologous bone grafting require 3 D scaffolds for bone repair. Compared with synthetic materials, natural edible materials possess outstanding advantages in terms of biocompatibility, bioactivities and low manufacturing cost for bone tissue engineering. In this work, attracted by the natural porous/fabric structure, good biocompatibility and bioactivities of the lotus root, the lotus root-based scaffolds were fabricated and investigated the...  相似文献   

11.
骨在组织工程中得到了非常广泛、深入的研究.支架材料与许多可降解材料一起也在进行探索性研究.用于骨组织工程的生物材料可以是三维多孔的刚硬材料,也可以是可注射材料.本文从聚合物角度综述了骨组织工程对支架材料的基本要求,用于骨组织工程的可降解生物材料、支架材料的设计和制备技术以及支架材料的表面修饰等方面的研究进展.  相似文献   

12.
Bone tissue engineering has become one of the most effective methods for treating bone defects. In this study, an electrospun tissue engineering membrane containing magnesium was successfully fabricated by incorporating magnesium oxide (MgO) nanoparticles into silk fibroin and polycaprolactone (SF/PCL)-blend scaffolds. The release kinetics of Mg2+ and the effects of magnesium on scaffold morphology, and cellular behavior were investigated. The obtained Mg-functionalized nanofibrous scaffolds displayed controlled release of Mg2+, satisfactory biocompatibility and osteogenic capability. The in vivo implantation of magnesium-containing electrospun nanofibrous membrane in a rat calvarial defect resulted in the significant enhancement of bone regeneration twelve weeks post-surgery. This work represents a valuable strategy for fabricating functional magnesium-containing electrospun scaffolds that show potential in craniofacial and orthopedic applications.  相似文献   

13.
This review paper presents many exciting nanotechnology and tissue engineering approaches involving polymers that have enormous potential impact on human health care, particularly for orthopedic applications. As scaffolds play a vital role in tissue engineering, the feasibility of designing polymeric nano-featured scaffolds is reviewed. Although bone is a very diverse tissue providing different functions within the body, recent work has resulted in new biomaterials with promise to solve orthopedic problems. Significant advancements in orthopedic care are required since recent data highlight a less than 15 year lifetime of current hip implants. Nanotechnology (or the use of nanomaterials) is providing a wide range of new materials to improve the current short lifetimes of orthopedic implants.  相似文献   

14.
Autologous bone grafts, used mainly in extensive bone loss, are considered the gold standard treatment in regenerative medicine, but still have limitations mainly in relation to the amount of bone available, donor area, morbidity and creation of additional surgical area. This fact encourages tissue engineering in relation to the need to develop new biomaterials, from sources other than the individual himself. Therefore, the present study aimed to investigate the effects of an elastin and collagen matrix on the bone repair process in critical size defects in rat calvaria. The animals (Wistar rats, n = 30) were submitted to a surgical procedure to create the bone defect and were divided into three groups: Control Group (CG, n = 10), defects filled with blood clot; E24/37 Group (E24/37, n = 10), defects filled with bovine elastin matrix hydrolyzed for 24 h at 37 °C and C24/25 Group (C24/25, n = 10), defects filled with porcine collagen matrix hydrolyzed for 24 h at 25 °C. Macroscopic and radiographic analyses demonstrated the absence of inflammatory signs and infection. Microtomographical 2D and 3D images showed centripetal bone growth and restricted margins of the bone defect. Histologically, the images confirmed the pattern of bone deposition at the margins of the remaining bone and without complete closure by bone tissue. In the morphometric analysis, the groups E24/37 and C24/25 (13.68 ± 1.44; 53.20 ± 4.47, respectively) showed statistically significant differences in relation to the CG (5.86 ± 2.87). It was concluded that the matrices used as scaffolds are biocompatible and increase the formation of new bone in a critical size defect, with greater formation in the polymer derived from the intestinal serous layer of porcine origin (C24/25).  相似文献   

15.
Porous poly(l-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) composite is a new promising scaffold for bone tissue engineering. Porous scaffolds fabricated by liquid anti-solvent precipitation principle were subjected to degradation in dynamic simulated body fluid (DSBF) and in static simulated body fluid (SSBF) at 37 °C for 24 weeks, respectively. Results indicated that a large number of apatite layer were formed on the scaffolds. The results further indicated that SBF flow decreased the degradation rate of molecular weight and compressive strength significantly. The porosity and mass changes were related to the apatite formation and SBF flow. All the results might be owed to the mutual effects of the flow of SBF and the addition of β-TCP. The degradation rate of scaffolds could be adjusted by the additional fraction of β-TCP to meet the requirements of application in vivo.  相似文献   

16.
17.
Current therapeutic interventions in bone defects are mainly focused on finding the best bioactive materials for inducing bone regeneration via activating the related intracellular signaling pathways. Integrins are trans‐membrane receptors that facilitate cell‐extracellular matrix (ECM) interactions and activate signal transduction. To develop a suitable platform for supporting human bone marrow mesenchymal stem cells (hBM‐MSCs) differentiation into bone tissue, electrospun poly L‐lactide (PLLA) nanofiber scaffolds were coated with nano‐hydroxyapatite (PLLA/nHa group), gelatin nanoparticles (PLLA/Gel group), and nHa/Gel nanoparticles (PLLA/nHa/Gel group) and their impacts on cell proliferation, expression of osteoblastic biomarkers, and bone differentiation were examined and compared. MTT data showed that proliferation of hBM‐MSCs on PLLA/nHa/Gel scaffolds was significantly higher than other groups (P < .05). Alkaline phosphatase activity was also more increased in hBM‐MSCs cultured under osteogenic media on PLLA/nHa/Gel scaffolds compared to others. Gene expression evaluation confirmed up‐regulation of integrin α2β1 as well as the osteogenic genes BGLAP, COL1A1, and RUNX2. Following use of integrin α2β1 blocker antibody, the protein level of integrin α2β1 in cells seeded on PLLA/nHa/Gel scaffolds was decreased compared to control, which confirmed that most of the integrin receptors were bound to gelatin molecules on scaffolds and could activate the integrin α2β1/ERK axis. Collectively, PLLA/nHa/Gel scaffold is a suitable platform for hBM‐MSCs adhesion, proliferation, and osteogenic differentiation in less time via activating integrin α2β1/ERK axis, and thus it might be applicable in bone tissue engineering.  相似文献   

18.
Porous nano-hydroxyapatite/polycaprolactone (nHA/PCL) scaffolds with different composition ratios of nHA/PCL were fabricated via a melt-molding/porogen leaching technique. All scaffolds were characterized before and after degradation in vitro for six months. The original scaffolds had high porosity at around 70% and showed decreasing compressive modulus (from 24.48 to 2.69 MPa for hydrated scaffolds) with the introduction of nHA. It was noted that the scaffolds could retain relatively stable architecture and mechanical properties for at least six months, although some slight changes happened with the nHA/PCL scaffolds in the mass, the nHA content, the PCL molecular weight and the crystallinity. Moreover, during the 7 days culture of bone marrow stromal cells (BMSCs) on scaffolds, the cell adhesion and proliferation of BMSCs were presented well on both the surface and the cross-section of the scaffolds. All of these results suggested the nHA/PCL scaffolds to be promising in bone tissue engineering.  相似文献   

19.
In order to increase the biocompatibility and bioactivity of chitosan, hydroxyapatite had been in situ combined into chitosan scaffolds. The bioactivity of the composite scaffolds was studied by examining the apatite formed on the scaffolds by incubating in simulated body fluid and the activity of preosteoblasts cultured on them. The apatite layer was assessed using scanning electronic microscope (SEM), X-ray diffraction (XRD), Fourier-Transformed Infrared spectroscopy (FTIR) and weight measurement. Composite analysis showed that after incubation in simulated body fluid on both of the scaffolds carbonate hydroxyapatite was formed. With increasing nano-hydroxyapatite content in the composite, the quantity of the apatite formed on the scaffolds increased. Compared with pure chitosan, the composite with nano-hydroxyapatite could form apatite more readily during the biomimetic process, which suggests that the composite possessed better mineralization activity. Furthermore, preosteoblast cells cultured on the apatite-coated scaffolds showed different behavior. On the apatite-coated composite scaffolds cells presented better proliferation than on apatite-coated chitosan scaffolds. In addition, alkaline phosphatase activities of cells cultured on the scaffolds in conditioned medium were assessed. The cells on composite scaffolds showed a higher alkaline phosphatase activity which suggested a higher differentiation level. The results indicated that the addition of nano-hydroxyapatite improved the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds. On the other hand, that is to say composition of substrates could affect the apatite formation on them, and pre-loaded hydroxyapatite can enhance the apatite-coating. It will also be significant in preparation of apatite-coating polymer scaffolds for bone tissue engineering.  相似文献   

20.
As a result of aging populations in the industrialized world, the development of biomaterials for bone tissue engineering is becoming increasingly important. Rheology, which is a key parameter in process engineering, plays a decisive role in designing these biomaterials. As a prime example of biomaterials engineering, this review focuses on formulations that are based on hydroxyapatite (HAp). More specifically, we will discuss the contribution of rheology for designing injectable bone replacement materials, composite gel scaffolds, porous scaffolds and scaffolds that can be generated using rapid prototyping or 3D printing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号