首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
非线性流体-刚体结构相互作用问题的一种数值模拟方法   总被引:4,自引:0,他引:4  
给出了一种模拟非线性流体-刚体结构相互作用问题的数值方法.文中假定结构承受大的刚体运动,流体流动受非线性有粘或无粘的场方程支配并满足自由表面和两相耦合界面上的非线性边界条件,利用任意拉氏-欧氏(ALE)网格系统构造了数值模型.采用所探讨的多块数值格式,允许可动重造网格间有独立的相对运动,从而克服了流体网格与固体大运动匹配的困难.通过数值离散化,导出了描述非线性流固耦合动力学的数值方程并应用耦合迭代过程对其作了求解.通过算例,说明了所提出数值模型的应用.  相似文献   

2.
基于任意多边形网格管理体系,针对流体多介质问题的数值模拟,发展了拉氏方法滑移面计算技术.文章给出了滑移线设置的数据结构,滑移线上主从点速度与位置的计算格式,及节点滑移后引起界面上点、相关网格邻域关系变化的算法.该滑移计算技术避免了传统算法中由于以模拟法(重叠或分离网格)代替直接法(拼接网格)而造成几何守恒律被破坏的缺陷.数值例子验证了该算法的可行性,体现了算法无缝连接的特点.  相似文献   

3.
李波  唐寿高  江理平 《力学季刊》2000,21(2):209-213
本文将以现代常微分方程求解器为支撑软件的线法推广应用于含时间变量的粘弹性力学问题。基基本思想是先用拦普拉斯积分变换把问题的控制偏微分方程组和定解条件进行交换,得到拉氏变换空间中的定常问题,然后用传统的线法借助于常微分方程求解器得到该变换空间中的数值解,再应用拉氏数值逆变换求得原时空域中的数值解。文中还给出方法的基本原理和实施过程。算例表明,采用拉普拉斯积分变换于线法分析结构粘弹性力学等含时间变量的  相似文献   

4.
邓小毛  廖子菊 《力学学报》2022,54(12):3513-3523
三维流固耦合问题的非结构网格数值算法在很多工程领域都有重要应用, 目前现有的数值方法主要基于分区算法, 即流体和固体区域分别进行求解, 因此存在收敛速度较慢以及附加质量导致的稳定性问题, 此外, 该类算法的并行可扩展性不高, 在大规模应用计算方面也受到一定限制.本文针对三维非定常流固耦合问题, 提出一种基于区域分解的全隐全耦合可扩展并行算法.首先基于任意拉格朗日?欧拉框架建立流固耦合控制方程, 然后时间方向采用二阶向后差分隐式格式、空间方向采用非结构稳定化有限元方法进行离散.对于大规模非线性离散系统, 构造一种结合非精确Newton法、Krylov子空间迭代法与区域分解Schwarz预条件子的Newton-Krylov-Schwarz (NKS) 并行求解算法, 实现流体、固体和动网格方程的一次性整体求解.采用弹性障碍物绕流的标准测试算例对数值方法的准确性进行了验证, 数值性能测试结果显示本文构造的全隐全耦合算法具有良好的稳定性, 在不同的物理参数下具有良好的鲁棒性, 在“天河二号”超级计算机上, 当并行规模从192增加到3072个处理器核时获得了91%的并行效率.性能测试结果表明本文构造的NKS算法有望应用于复杂区域流固耦合问题的大规模数值模拟研究中.   相似文献   

5.
气体动理学格式研究进展   总被引:4,自引:0,他引:4  
李启兵  徐昆 《力学进展》2012,42(5):522-537
介绍了近年来气体动理学格式(gas-kinetic scheme, GKS, 亦简称BGK 格式) 的主要研究进展, 重点是高阶精度动理学格式及适合从连续流到稀薄流全流域的统一动理学格式. 通过对速度分布函数的高阶展开和对初值的高阶重构, 构造了时间和空间均为三阶精度的气体动理学格式. 研究表明, 相比于传统的基于Riemann 解的高阶格式, 新格式不仅考虑了网格单元界面上物理量的高阶重构, 而且在初始场的演化阶段耦合了流体的对流和黏性扩散, 也能够保证解的高阶精度. 该研究为高精度计算流体力学(computatial uiddymamics, CFD) 格式的建立提供了一条新的途径. 通过分子离散速度空间直接求解Boltzmann 模型方程,在每个时间步长内将宏观量的更新和微观气体分布函数的更新紧密地耦合在一起, 建立了适合任意Knudsen(kn) 数的统一格式, 相比于已有的直接离散格式具有更高的求解效率. 最后, 本文还讨论了合理的物理模型对数值方法的重要性. 气体动理学方法的良好性能来自于Boltzmann 模型方程对计算网格单元界面上初始间断的时间演化的准确描述. 气体自由运动与碰撞过程的耦合是十分必要的. 通过分析数值激波层内的耗散机制,我们认识到采用Euler 方程的精确Riemann 解作为现代可压缩CFD 方法的基础具有根本的缺陷, 高马赫数下的激波失稳现象不可避免. 气体动理学格式为构造数值激波结构提供了一个重要的可供参考的物理机制.   相似文献   

6.
蚁群算法求解二维拉压不同模量反问题   总被引:2,自引:2,他引:0  
利用光滑函数技术对二维拉压不同模量本构关系进行光滑化处理,采用初应力方法求解二维拉压不同模量正问题的有限元方程。在此基础上,建立了基于连续域蚁群算法的二维拉压不同模量反问题的数值求解模型,考虑了区域非均质的影响,实现了对拉压弹性模量和泊松比的单一/组合识别。通过两个数值算例,对所提算法进行了数值验证,分别探讨了蚁群算法相关参数、测点分布和数据噪音等对识别结果的影响。数值验证表明,所提算法可有效地求解二维拉压不同模量反问题,并具有较好的计算精度。  相似文献   

7.
王瑞利  梁霄  林忠 《爆炸与冲击》2017,37(6):893-900
针对爆轰流体力学数值模拟过程中输入参数的不确定性, 通过抽样技术, 形成确定性爆轰流体力学程序的各种输入和数值求解, 建立输入参数与输出响应量的样本, 再通过概率框架下的误差累积分布函数与马尾图, 给出了爆轰数值模拟过程中输入参数不确定度对模拟结果影响的置信度量化方法。通过一维黎曼问题、平面爆轰问题计算了误差马尾图, 给出了二维爆轰拉氏自适应流体动力学LAD2D程序计算网格与模拟结果置信度的关系, 对多物理爆轰过程发展高置信度数值模拟软件有很好的借鉴作用。  相似文献   

8.
Maire等提出了一种新型的有限体积中心型拉氏方法, 该方法大大地改善了一直困扰着一般中心型拉氏方法的虚假网格变形. 然而在计算数值流和移动网格时,该方法只应用了数值黏性较大的弱波近似(weak wave approximatedmethod, WWAM) Riemann解, 而且方法的设计表明其他类型的近似Riemann解不能简单直接地应用上去. 将体平均多流管(multifluid channel on averaged volume, MFCAV)近似Riemann解视为对WWAM的修正,成功将其应用于新型方法中, 数值实验表明应用了MFCAV 的新方法是有效的. 研究为将其他更为有效的近似Riemann解应用于该新型方法中开辟了一条道路.   相似文献   

9.
结构入水问题是一种复杂的流固耦合过程,涉及到固体力学、流体力学、冲击动力学和计算力学等相关力学分支的交叉与融合.论文基于非线性显式动力分析方法,采用任意拉格朗日-欧拉算法(水域采用欧拉描述,固体结构采用拉格朗日描述),并用罚函数方法控制结构与流体之间的耦合作用,对二维V形楔形体垂直入水的初期过程进行了数值仿真.通过数值仿真,分析了楔形体底部压力分布情况,讨论了网格密度、接触刚度以及阻尼系数对数值计算结果的影响,并将数值结果与Wagner理论解进行了对比分析,验证了ALE方法的可靠性.  相似文献   

10.
本文主要研究了流体负载下敷设去耦阻尼层的加筋板,在外界激励力作用下的振动和声辐射,推导出了敷设去耦层有限长加筋板的振动响应和水下辐射噪声近似解析解。采用弹性理论来描述去耦层,并采用模态迭加理论构造响应函数,将加强筋等效为线力的作用,以复模量形式计及去耦阻尼层损耗因子,建立了敷设去耦阻尼层加筋板的理论解析模型,结合加筋板与去耦层变形连续条件、结构与流体连续性条件组成了声-流体-结构的耦合方程,结合数值计算方法,得到了有限长加筋板结构的振动位移及水下辐射噪声。开展相应数值算例与模型试验结果吻合较好,验证本文方法的正确性。  相似文献   

11.
随着计算机技术的飞速进步,计算流体力学得到迅猛发展,数值计算虽能够快速得到离散结果,但是数值结果的正确性与精度则需要通过严谨的方法来进行验证和确认.制造解方法和网格收敛性研究作为验证与确认的重要手段已经广泛应用于计算流体力学代码验证、精度分析、边界条件验证等方面.本文在实现标量制造解和分量制造解方法的基础上,通过将制造解方法精度测试结果与经典精确解(二维无黏等熵涡)精度测试结果进行对比,进一步证实了制造解精度测试方法的有效性,并将两种制造解方法应用于非结构网格二阶精度有限体积离散格式的精度测试与验证,对各种常用的梯度重构方法、对流通量格式、扩散通量格式进行了网格收敛性精度测试.结果显示,基于Green-Gauss公式的梯度重构方法在不规则网格上会出现精度降阶的情况,导致流动模拟精度严重下降,而基于最小二乘(least squares)的梯度重构方法对网格是否规则并不敏感.对流通量格式的精度测试显示,所测试的各种对流通量格式均能达到二阶精度,且各方法精度几乎相同;而扩散通量离散中界面梯度求解方法的选择对流动模拟精度有显著影响.  相似文献   

12.
Code verification is the process of ensuring, to the extent possible, that there are no algorithm deficiencies and coding mistakes (bugs) in a scientific computing simulation. Order of accuracy testing using the Method of Manufactured Solutions (MMS) is a rigorous technique that is employed here for code verification of the main components of an open-source, multiphase flow code – MFIX. Code verification is performed here on 2D and 3D, uniform and stretched meshes for incompressible, steady and unsteady, single-phase and two-phase flows using the two-fluid model of MFIX. Currently, the algebraic gas-solid exchange terms are neglected as these can be verified via techniques such as unit-testing. The no-slip wall, free-slip wall, and pressure outflow boundary conditions are verified. Temporal orders of accuracy for first-order and second-order time-marching schemes during unsteady simulations are also assessed. The presence of a modified SIMPLE-based algorithm in the code requires the velocity field to be divergence free in case of the single-phase incompressible model. Similarly, the volume fraction weighted velocity field must be divergence-free for the two-phase incompressible model. A newly-developed curl-based manufactured solution is used to generate manufactured solutions that satisfy the divergence-free constraint during the verification of the single-phase and two-phase incompressible governing equations. Manufactured solutions with constraints due to boundary conditions as well as due to divergence-free flow are derived in order to verify the boundary conditions.  相似文献   

13.
The method of manufactured solutions is used to verify the order of accuracy of two finite‐volume Euler and Navier–Stokes codes. The Premo code employs a node‐centred approach using unstructured meshes, while the Wind code employs a similar scheme on structured meshes. Both codes use Roe's upwind method with MUSCL extrapolation for the convective terms and central differences for the diffusion terms, thus yielding a numerical scheme that is formally second‐order accurate. The method of manufactured solutions is employed to generate exact solutions to the governing Euler and Navier–Stokes equations in two dimensions along with additional source terms. These exact solutions are then used to accurately evaluate the discretization error in the numerical solutions. Through global discretization error analyses, the spatial order of accuracy is observed to be second order for both codes, thus giving a high degree of confidence that the two codes are free from coding mistakes in the options exercised. Examples of coding mistakes discovered using the method are also given. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The method of manufactured solutions (MMS) is a solution verification methodology for determining whether the implementation of a discretization method is achieving its theoretical order of accuracy. This methodology combines the advantages of grid refinement studies and comparison with exact solution, by modifying the governing equations solved within a code by adding a source term to drive the solution towards a predetermined analytic function. By solving the modified equations on a sequence of grids and comparing the differences between the converged solution and manufactured solution, the order of accuracy of the implementation can be investigated. However, in its current form, converged solutions on a sequence of grids are required which can be quite costly and difficult to obtain. In this paper, by comparing the MMS to the method for determining the theoretical order of accuracy of a discretization method, the residual formulation of the MMS is developed. This new formulation only requires that the residual of the discretized governing equations to be calculated and not the solution to the discretized equations, thus avoiding the computational cost and difficulties inherent in obtaining converged solutions. Furthermore, since only the residuals are interrogated, individual components of the flow solver can be tested, in isolation, allowing the MMS to be used more effectively in locating errors within the code. This new approach is demonstrated to yield the same order of accuracy as the original MMS using three different cases—one-dimensional porous media equation, one-dimensional St Venant equations and two-dimensional unstructured Navier–Stokes simulations.  相似文献   

15.
计算流体力学(computational fluid dynamics,CFD)数值模拟在航空航天等领域发挥越来越重要的作用,然而CFD数值模拟结果的可信度仍然需要通过不断地验证与确认来提高.本文给出了从制造解精度测试、简单到复杂外形湍流模拟网格收敛性研究等三个方面开展CFD软件验证与确认的方法,并对自主研发的CFD软件平台HyperFLOW在非结构网格上模拟亚跨声速湍流问题的能力进行了验证与确认.首先通过基于Euler方程和标量扩散方程的制造解精度测试,分别验证了HyperFLOW在非结构网格上对Euler方程和黏性项的求解精度,结果表明其能够在任意非结构网格上达到设计的二阶精度. 其次,通过NASATurbulence Modeling Resource中的湍流平板、二维翼型近尾迹流动、二维Bump等几个典型的亚声速湍流算例的网格收敛性研究,量化考察了数值结果的观测精度阶和网格收敛性指数,并与国外知名CFD解算器CFL3D,FUN3D的计算结果进行了对比,验证了HyperFLOW对简单湍流问题的模拟能力,且具有良好的网格收敛性和计算精度(阶). 最后,通过NASA CommonResearchModel标模定升力系数的网格收敛性研究和升阻极曲线预测,验证了软件在复杂外形亚跨声速湍流流动数值模拟中也具有良好的可信度.   相似文献   

16.
This paper presents results on a verification test of a Direct Numerical Simulation code of mixed high‐order of accuracy using the method of manufactured solutions (MMS). This test is based on the formulation of an analytical solution for the Navier–Stokes equations modified by the addition of a source term. The present numerical code was aimed at simulating the temporal evolution of instability waves in a plane Poiseuille flow. The governing equations were solved in a vorticity–velocity formulation for a two‐dimensional incompressible flow. The code employed two different numerical schemes. One used mixed high‐order compact and non‐compact finite‐differences from fourth‐order to sixth‐order of accuracy. The other scheme used spectral methods instead of finite‐difference methods for the streamwise direction, which was periodic. In the present test, particular attention was paid to the boundary conditions of the physical problem of interest. Indeed, the verification procedure using MMS can be more demanding than the often used comparison with Linear Stability Theory. That is particularly because in the latter test no attention is paid to the nonlinear terms. For the present verification test, it was possible to manufacture an analytical solution that reproduced some aspects of an instability wave in a nonlinear stage. Although the results of the verification by MMS for this mixed‐order numerical scheme had to be interpreted with care, the test was very useful as it gave confidence that the code was free of programming errors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
There has been a dramatic increase in the number of research publications using the population balance equation (PBE). The PBE allows the prediction of the spatial distribution of the dispersed phase size for an accurate estimation of the flow fields in multiphase flows. A few recent studies have proposed new efficient numerical methods to solve non-homogeneous multivariate PBE and implemented the same in computational fluid dynamics (CFD) codes. However, these codes are generally benchmarked against other numerical methods and applied without verification. To address this gap, an analytical solution for a three-dimensional non-homogeneous bivariate PBE is presented here for the first time. The method of manufactured solutions (MMS) has been used to construct a solution of the non-homogeneous PBE containing breakage and coalescence terms, and an additional source term appearing as a result of this method. The analytical solution presented in this work can be used for the rigorous verification of computer codes written to solve the non-homogeneous bivariate PBE. Quantification of the errors due to different numerical schemes will also become possible with the availability of this analytical solution for the PBE.  相似文献   

18.
王年华  李明  张来平 《力学学报》2018,50(3):527-537
非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义. 计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两个方面考察黏性流动模拟精度的影响因素. 首先从理论上分析了黏性通量离散中的“奇偶失联”问题,并通过基于标量扩散方程的制造解方法验证了“奇偶失联”导致的精度下降现象,进一步通过引入差分修正项消除了“奇偶失联”并提高了扩散方程计算精度;其次,在不同类型、不同质量的网格上进行基于扩散方程的制造解精度测试,考察单元梯度重构方法、界面梯度计算方法对扩散方程计算精度的影响,结果显示,单元梯度重构精度和界面梯度计算方法均对扩散方程计算精度起重要作用;最后对三个黏性流动算例(二维层流平板、二维湍流平板和二维翼型近尾迹流动)进行网格收敛性研究,初步验证了本文的结论,得到了计算精度和网格收敛性均较好的黏性通量计算格式.   相似文献   

19.
Relying on two recent contributions by Massot et al. [SIAM J. Appl. Math. 70 (2010), 3203–3234] and Kah et al. [J. Comput. Phys. 231(2012)], where a Eulerian Multi-Size Moment (EMSM) model for the simulation of polydisperse evaporating sprays has been introduced, we investigate the potential of such an approach for the robust and accurate simulation of the injection of a liquid disperse phase into a gas for automotive engine applications. The original model used a high order moment method in droplet size to resolve polydispersity, with built-in realizability preserving numerical algorithm of high order in space and time, but only dealt with one-way coupling and was restricted to fixed meshes. Extending the approach to internal combustion engine and fuel injection requires solving two major steps forward, while preserving the properties of robustness, accuracy and realizability: 1 – the extension of the method and numerical strategy to two-way coupling with stable integration of potential stiff source terms, 2 – the introduction of a moving geometry and meshes. We therefore present a detailed account on how we have solved these two issues, provide a series of verification of the proposed algorithm, showing its potential in simplified configurations. The method is then implemented in the IFP-C3D unstructured solver for reactive compressible flows in engines and validated through comparisons with a structured fixed mesh solver. It finally proves its potential on a free spray jet injection where it is compared to a Lagrangian approach and its reliability and robustness are assessed, thus making it a good candidate for realistic injection applications.  相似文献   

20.
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.The procedure contains two parts,i.e.,the code verification and the accuracy analysis.The code verification provides the confidence that the code used is free of mistakes,and the accuracy analysis gives the order of accuracy of the immersed boundary method.The method of manufactured solutions is taken as a means for both parts.In the first part,the numerical code employs a second-order discretization scheme,i.e.,it has second-order accuracy in theory.It matches the calculated order of accuracy obtained in the numerical calculation for all variables.This means that the code contains no mistake,which is a premise of the subsequent work.The second part introduces a jump in the manufactured solution for the pressure and adds the corresponding singular forcing terms in the momentum equations.By analyzing the discretization errors,the accuracy of the immersed boundary method is proven to be first order even though the discretization scheme is second order.It has been found that the coarser mesh may not be sensitive enough to capture the influence of the immersed boundary,and the refinement on the Lagrangian markers barely has any effect on the numerical calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号