首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SmFeTeO6 and SmCrTeO6 were synthesized by heating the respective oxides in molar quantities and characterized by X-ray technique. Thermogravimetric studies suggested that SmFeTeO6 and SmCrTeO6 vapourize incongruently according to the reactions: $$ \begin{aligned} {\text{SmFeTeO}}_{ 6}{({\text{s}})} & \to {\text{SmFeO}}_{ 3} {( {\text{s}})} + {\text{TeO}}_{ 2} {( {\text{g}})} + \left( { 1/ 2} \right){\text{O}}_{ 2}{( {\text{g}})} \\ {\text{SmCrTeO}}_{ 6} {( {\text{s}})} & \to {\text{SmCrO}}_{ 3} {( {\text{s}})} + {\text{TeO}}_{ 2}{( {\text{g}})} + \left( { 1/ 2} \right){\text{O}}_{ 2}{( {\text{g}})}. \\ \end{aligned} $$ X-ray diffraction data of both the compounds have been indexed on the hexagonal system. Partial pressures of TeO2(g) were measured over SmFeO3(s) and SmCrO3(s) by employing the Knudsen effusion mass loss technique. The standard Gibbs free energy of formation of (Δf G°) SmFeTeO6(s) and SmCrTeO6(s) were obtained from partial pressures and represented by the following relations: $$\Updelta_{\text{f}} G^{\circ} \left( {{\text{SmFeTeO}}_{6}{( {{\text{s}},\,T})}} \right) \pm 2 5\,{\text{kJ}}\,{\text{mol}}^{ - 1} = - 1 5 1. 6 5+ 0. 1 5\left(T \right)\quad \left( 1 ,0 90{-} 1,1 80\,{\text{K}} \right) \\ \Updelta_{\text{f}} G^{\circ } \left( {{\text{SmCrTeO}}_{ 6} {( {{\text{s}},\,T})}} \right) \pm 2 5\,{\text{kJ}}\,{\text{mole}}^{ - 1} = - 2 5 2. 8 6+ 0. 1 2(T)\quad \left( { 1,100 {-} 1 , 1 7 5\,{\text{K}}} \right).$$   相似文献   

2.
The product, [Pr(C7H5O3)2(C9H6NO)], which was formed by praseodymium nitrate hexahydrate, salicylic acid (C7H6O3), and 8-hydroxyquinoline (C9H7NO), was synthesized and characterized by elemental analysis, UV spectra, IR spectra, molar conductance, and thermogravimetric analysis. In an optimalizing calorimetric solvent, the dissolution enthalpies of [Pr(NO3)3·6H2O(s)], [2 C7H6O3(s) + C9H7NO(s)], [Pr(C7H5O3)2(C9H6NO)(s)], and [solution D (aq)] were measured to be, by means of a solution-reaction isoperibol microcalorimeter, $ \begin{gathered}\Updelta_{\text{s}} H_{\text{m}}^{\theta}\left[ {{ \Pr }\left( {{\text{NO}}_{ 3} } \right)_{ 3} \cdot 6{\text{H}}_{ 2} {\text{O}}\left( {\text{s}} \right), 2 9 8. 1 5{\text{ K}}} \right] \, = - ( 20. 6 6 { } \pm \, 0. 29)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\Updelta_{\text{s}} H_{\text{m}}^{\theta } \left[ { 2 {\text{C}}_{7} {\text{H}}_{ 6} {\text{O}}_{ 3} \left( {\text{s}} \right) +{\text{ C}}_{ 9} {\text{H}}_{ 7} {\text{NO}}\left( {\text{s}}\right),{ 298}. 1 5 {\text{ K}}} \right] \, = \, ( 4 2. 2 7 { }\pm \, 0. 3 1)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\Updelta_{\text{s}} H_{\text{m}}^{\theta } \left[ {{\text{solutionD }}\left( {\text{aq}} \right), 2 9 8. 1 5 {\text{ K}}} \right] \,= - \left( { 8 9. 1 5 { } \pm \, 0. 4 3}\right)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\end{gathered} $ Δ s H m θ [ Pr ( NO 3 ) 3 · 6 H 2 O ( s ) , 2 9 8.1 5 K ] = ? ( 20.6 6 ± 0.2 9 ) kJ mol ? 1 , Δ s H m θ [ 2 C 7 H 6 O 3 ( s ) + C 9 H 7 NO ( s ) , 298.1 5 K ] = ( 4 2.2 7 ± 0.3 1 ) kJ mol ? 1 , Δ s H m θ [ solution D ( aq ) , 2 9 8.1 5 K ] = ? ( 8 9.1 5 ± 0.4 3 ) kJ mol ? 1 , and $ \Updelta_{\text{s}} H_{\text{m}}^{\theta } \left\{ {\left[ {{\Pr }\left( {{\text{C}}_{ 7} {\text{H}}_{ 5} {\text{O}}_{ 3} }\right)_{ 2} \left( {{\text{C}}_{ 9} {\text{H}}_{ 6} {\text{NO}}}\right)} \right]\left( {\text{s}} \right),{ 298}. 1 5 {\text{ K}}}\right\} \, = - \left( { 4 1.0 4 { } \pm \, 0. 3 3}\right)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ s H m θ { [ Pr ( C 7 H 5 O 3 ) 2 ( C 9 H 6 NO ) ] ( s ) , 298.1 5 K } = ? ( 4 1.0 4 ± 0.3 3 ) kJ mol ? 1 , respectively. Through an improved thermochemical cycle, the enthalpy change of the designed coordination reaction was calculated to be $\Updelta_{\text{r}} H_{\text{m}}^{\theta} = \, ( 2 1 3. 1 8\pm0. 6 9)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ r H m θ = ( 2 1 3.1 8 ± 0.6 9 ) kJ mol ? 1 , the standard molar enthalpy of the formation was determined as $ \Updelta_{\text{f}} H_{\text{m}}^{\theta} \left\{ {\left[ {{\Pr }\left( {{\text{C}}_{ 7} {\text{H}}_{ 5} {\text{O}}_{ 3} }\right)_{ 2} \left( {{\text{C}}_{ 9} {\text{H}}_{ 6} {\text{NO}}}\right)} \right]\left( {\text{s}} \right), 2 9 8. 1 5 {\text{K}}}\right\} \, = \, - \, ( 1 8 7 5. 4\pm 3.1)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ f H m θ { [ Pr ( C 7 H 5 O 3 ) 2 ( C 9 H 6 NO ) ] ( s ) , 2 9 8.1 5 K } = ? ( 1 8 7 5.4 ± 3.1 ) kJ mol ? 1 .  相似文献   

3.
Molar heat capacity measurement on Na2TeO4(s) and TiTe3O8(s) were carried out using differential scanning calorimeter. The molar heat capacity values were least squares analyzed and the dependence of molar heat capacity with temperature for Na2TeO4(s) and TiTe3O8(s) can be given as, $$ \begin{gathered} {\text{C}}^{\text{o}}_{{{\text{p}},{\text{m}}}} \left\{ {{\text{Na}}_{ 2} {\text{TeO}}_{ 4} \left( {\text{s}} \right)} \right\} \,={159}.17 { } + 1.2\,\times\,10^{-4}T-{55}.34\,\times\,10^{5}/T^{2};\hfill \\ C^{\text{o}}_{{{\text{p}},{\text{m}}}} \left\{ {{\text{TiTe}}_{ 3} {\text{O}}_{ 8} \left( {\text{s}} \right)} \right\}\,=\,{ 275}.22{ }+{4}.0\,\times\, 10^{-5}T-{58}.28\,\times\,10^{5}/T^{2};\hfill \\ \end{gathered} $$ From this data, other thermodynamic functions were evaluated.  相似文献   

4.
This work is aimed at providing physical insights about the interactions of cations, anion, and ion pairs of four imidazolium-based ionic liquids of \(\left[ {{\text{C}}_{\text{n}} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) with varying alkyl chain lengths (n = 2, 4, 6, and 8) using both DFT calculations and vibrational spectroscopic measurements (IR absorption and Raman scattering) in the mid- and far regions. The calculated Mulliken charge distributions of \(\left[ {{\text{C}}_{\text{n}} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) ion pairs indicate that hydrogen-bonding interactions between oxygen and nitrogen atoms (more negative charge) on \(\left[ {{\text{NTF}}_{2} } \right]^{ - }\) anion and the hydrogen atoms (more positive charge) on the imidazolium ring play a dominating role in the formation of ion pair. Thirteen stable conformers of \(\left[ {{\text{C}}_{2} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) were optimized. According to our results, the strongest and weakest hydrogen bonds were existing in \(\left[ {{\text{C}}_{2} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) and \(\left[ {{\text{C}}_{8} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\), respectively. A redshift of 290, 262, 258, and 257 cm?1 has been observed for cations involving \(\left[ {{\text{C}}_{2} {\text{mim}}} \right]^{ + }\), \(\left[ {{\text{C}}_{4} {\text{mim}}} \right]^{ + }\),\(\left[ {{\text{C}}_{6} {\text{mim}}} \right]^{ + }\), and stretching vibrations of \({\text{C}}12{-}{\text{H}}3\), respectively. By increasing the chain length, the strength of hydrogen bonds decreases as a result of \({\text{C}}12{-}{\text{H}}3\) bond elongation and less changes are observed in stretching vibrations of \({\text{C}}12{-}{\text{H}}3\) compared to the free cations. To the best of our knowledge, this research is the first work which reports the far-IR of \(\left[ {{\text{C}}_{4} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\), \(\left[ {{\text{C}}_{6} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\), and \(\left[ {{\text{C}}_{8} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\) and the mid-IR of \(\left[ {{\text{C}}_{8} {\text{mim}}} \right]\left[ {{\text{NTF}}_{2} } \right]\).  相似文献   

5.
As a new method, stable-isotope dilution activation analysis has been developed. When an element consists of at least two stable isotopes which are converted easily to the radioactive nuclides through nuclear reactions, the total amount of the element (xg) can be determined by irradiating simultaneously the duplicated sample containing small amounts of either enriched isotope (y g), and by using the following equation. $${{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} \mathord{\left/ {\vphantom {{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}$$ Where M and M* are atomic weights of the element to be determined and the enriched isotope used as a spike,θ 1 andθ 2 are natural abundances of two stable isotopes in the element,θ 1 * andθ 2 * are isotopic compositions of the above isotopes in the enriched isotope, and R and R* are counting ratios of gamma-rays emitted by two radionuclides produced in the sample and the isotopic mixture. Neither calibration standard nor correction of irradiation conditions are necessary for this method. Usefulness of the present method was verified by photon activations of Ca, Zn and Ce using isotopically enriched48ca,68Zn and142Ce.  相似文献   

6.
Three new binuclear copper complexes of formulae $ \left[ {{\text{Cu}}_{2}^{\text{II}} {\text{Pz}}_{2}^{\text{Me3}} {\text{Br}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (1), $ \left[ {{\text{Cu}}_{ 2}^{\text{II}} {\text{Pz}}_{2}^{\text{Ph2Me}} {\text{Cl}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (2) and $ \left[ {{\text{Cu}}_{2}^{\text{II}} \left( {{\text{Pz}}^{\text{PhMe}} } \right)_{ 4} {\text{Cl}}_{ 4} } \right] $ (3) (PzMe3?=?3,4,5-trimethylpyrazole, PzPh2Me?=?4-methyl-3,5-diphenylpyrazole and PzPhMe?=?3-methyl-5-phenylpyrazole) have been synthesized and characterized by chemical analysis, FTIR and 31P NMR spectroscopy and single-crystal X-ray diffraction. Complex 1 is a doubly bromo-bridged dimer, while complexes 2 and 3 are chloro-bridged dimers. The Cu(II) centers are in a distorted tetrahedral geometry for 1 and 2 and a distorted square pyramidal N2Cl3 environment for 3.  相似文献   

7.
A comparison is presented of uncontracted multireference singles and doubles configuration interaction (MRCI) and internally contracted MRCI potential energy surfaces for the reaction ${\text{H}}\left( {^{2} {\text{S}}} \right) + {\text{O}}_{2} \left( {^{3} \sum\nolimits_{g}^{ - } {} } \right) \to {\text{HO}}_{2} \left( {^{2} {\text{A}}^{{\prime \prime }} } \right)$ . It is found that internal contraction leads to significant differences in the reaction kinetics relative to the uncontracted calculations.  相似文献   

8.
The extraction kinetics of uranium(VI) and thorium(IV) with Tri-iso-amyl phosphate (TiAP) from nitric acid medium has been investigated using a Lewis Cell. Especially, dependences of the extraction rate on stirring speed, temperature, interfacial area were firstly measured to elucidate the extraction kinetics regimes. The experimental results demonstrated that extraction kinetic of U(VI) is governed by chemical reactions at interface with an activation energy, Ea, of 43.41 kJ/mol, while the rate of Th(IV) extraction is proved to be intermediate controlled, of which the Ea is 23.20 kJ/mol. Reaction orders with respect to the influencing parameters of the extraction rate are determined, and the rate equations of U(VI) and Th(IV) at 293 K have been proposed as $$ {\text{r}} = - {\text{dcUO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} /{\text{dt}} = 1. 80 \times 10^{ - 3} \left[ {{\text{UO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} } \right]^{ 1.0 1} \left[ {\text{TiAP}} \right]^{0. 5 5} , $$ $$ {\text{r}} = - {\text{dcTh }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} /{\text{dt}} = 1. 8 8\times 10^{ - 3} \left[ {{\text{Th }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} } \right]^{ 1.0 4} \left[ {\text{TiAP}} \right]^{ 1. 7 7} \left[ {{\text{HNO}}_{ 3} } \right]^{0. 3 8} , $$ respectively.  相似文献   

9.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

10.
Different tetraalkylammonium, viz. N+(CH3)4, N+(C2H5)4, N+(C3H7)4, N+(C4H9)4 along with simple ammonium salts of bis (2-ethylhexyl) sulfosuccinic acid have been prepared by ion-exchange technique. The critical micelle concentration of surfactants with varied counterions have been determined by measuring surface tension and conductivity within the temperature range 283–313 K. Counterion ionization constant, α, and thermodynamic parameters for micellization process viz., $\Delta G_m^{\text{0}} $ , $\Delta H_m^{\text{0}} $ , and $\Delta S_m^{\text{0}} $ and also the surface parameters, Γmax and Amin, in aqueous solution have been determined. Large negative $\Delta G_m^{\text{0}} $ of micellization for all the above counterions supports the spontaneity of micellization. The value of standard free energy, $\Delta G_m^{\text{0}} $ , for different counterions followed the order $${\text{N}}^{\text{ + }} \left( {{\text{CH}}_{\text{3}} } \right)_4 >{\text{NH}}_{\text{4}}^{\text{ + }} >{\text{Na}}^{\text{ + }} >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{2}} {\text{H}}_5 } \right)_{\text{4}} {\text{ $>$ N}}^{\text{ + }} \left( {{\text{C}}_{\text{3}} {\text{H}}_{\text{7}} } \right)_4 >{\text{N}}^{\text{ + }} \left( {{\text{C}}_{\text{4}} {\text{H}}_{\text{9}} } \right)_4 $$ , at a given temperature. This result can be well explained in terms of bulkiness and nature of hydration of the counterion together with hydrophobic and electrostatic interactions.  相似文献   

11.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

12.
We have recently reported that the organic bilayer of 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PTCBI, n-type semiconductor) and 29H,31H-phthalocyanine (H2Pc, p-type semiconductor), which is a part of a photovoltaic cell, acts as a photoanode in the water phase (Abe et al., ChemPhysChem 5:716, [2004]); in that case, the generation of the photocurrent involving an irreversible thiol oxidation at the H2Pc/water interface took place to be coupled with hole conduction through the H2Pc layer, based on the photophysical character of the bilayer. In the present work, the photoelectrode characteristics of the bilayer were investigated in the water phase containing a redox molecule , where the photo-induced oxidation and reduction for the couple were found to take place at the bilayer. The photoanodic current involving the oxidation efficiently occurred at the interface of H2Pc/water, similar to the previous example. In the view of the voltammograms obtained, it was noted that there are pin-holes in the H2Pc layer of the bilayer, leading to a cathodic reaction with at the PTCBI surface especially in the dark; that is, the band bending at the PTCBI/water interface can essentially be reduced by applying a negative potential [e.g., < ∼ 0 V (vs Ag/AgCl)] to the PTCBI, when the cathodic reaction may take place through the conduction band of the PTCBI. Moreover, under that applied potential condition of irradiation, the photogenerated electron carrier part can move to the PTCBI surface, thus enhancing the reduction of .  相似文献   

13.
The enthalpies of dissolution of gemcitabine hydrochloride in 0.9 % normal saline (medical) and citric acid solution were measured using a microcalorimeter at 309.65 K under atmospheric pressure. The differential enthalpy $ \left( {\Updelta_{\text{dif}} H_{\text{m}}^{{{\theta}}} } \right) $ and molar enthalpy $ \left( {\Updelta_{\text{sol}} H_{\text{m}}^{{{\theta}}} } \right) $ of dissolution were determined, respectively. The corresponding kinetic equation described the dissolution were elucidated to be da/dt = 10?3.84(1 ? a)0.92 and da/dt = 10?3.80(1 ? a)1.21. Besides, the half-life, $ \Updelta_{\text{sol}} H_{\text{m}}^{{{\theta}}} ,\;\Updelta_{\text{sol}} G_{\text{m}}^{{{\theta}}} $ and $ \Updelta_{\text{sol}} S_{\text{m}}^{{{\theta}}} $ of the dissolution were also obtained. Obviously, it will provide a simple and reliable method for the clinical application of gemcitabine hydrochloride.  相似文献   

14.
The equilibrium constants and thermodynamic parameters for complex formation of 18-crown-6(18C6) with Zn2+, Tl+, Hg2+ and $ {\text{UO}}^{{{\text{2 + }}}}_{{\text{2}}} $ cations have been determined by conductivity measurements in acetonitrile(AN)-dimethylformamide(DMF) binary solutions. 18-crown-6 forms 1:1 complexes [M:L] with Zn2+, Hg2+ and $ {\text{UO}}^{{{\text{2 + }}}}_{{\text{2}}} $ cations, but in the case of Tl+ cation, a 1:2 [M:L2] complex is formed in most binary solutions. The thermodynamic parameters ( $ \Delta {\text{H}}^{ \circ }_{{\text{c}}} $ and $ \Delta {\text{S}}^{ \circ }_{{\text{c}}} $ ) which were obtained from temperature dependence of the equilibrium constants show that in most cases, the complexes are enthalpy destabilized but entropy stabilized and a non-monotonic behaviour is observed for variations of standard enthalpy and entropy changes versus the composition of AN/DMF binary mixed solvents. The obtained results show that the order of selectivity of 18C6 ligand for these cations changes with the composition of the mixed solvent. A non-linear relationship was observed between the stability constants (logKf) of these complexes with the composition of AN/DMF binary solutions. The influence of the $ {\text{ClO}}^{ - }_{{\text{4}}} $ , $ {\text{NO}}^{ - }_{{\text{3}}} $ and $ {\text{Cl}}^{ - } $ anions on the stability constant of (18C6-Na+) complex in methanol (MeOH) solutions was also studied by potentiometry method. The results show that the stability of (18C6-Na+) complex in the presence of the anions increases in order: $ {\text{ClO}}^{ - }_{{\text{4}}} $  >  $ {\text{NO}}^{ - }_{{\text{3}}} $  >  $ {\text{Cl}}^{ - } $ .  相似文献   

15.
The mechanism of reaction of the di-Ru-substituted polyoxometalate, {??-[(H2O)RuIII(??-OH)2RuIII(H2O)][X n+W10O36]}(8?n)?, I_X, with O2, i.e. I_X?+?O2????{??-[(·O)RuIV(??-OH)2RuIV(O·)][X n+W10O36]}(8?n)??+?2H2O, (1), was studied at the B3LYP density functional and self-consistent reaction field IEF-PCM (in aqueous solution) levels of theory. The effect of the nature of heteroatom X (where X?=?Si, P and, S) on the calculated energies and mechanism of the reaction (1) was elucidated. It was shown that the nature of X only slightly affects the reactivity of I_X with O2, which is a 4-electron oxidation process. The overall reaction (1): (a) proceeds with moderate energy barriers for all studied X??s [the calculated rate-determining barriers are X?=?Si (18.7?kcal/mol)?<?S (20.6?kcal/mol)?<?P (27.2?kcal/mol) in water, and X?=?S (18.7?kcal/mol)?<?P (21.4?kcal/mol)?<?Si (23.1?kcal/mol) in the gas phase] and (b) is exothermic [by X?=?Si [28.7 (22.1) kcal/mol]?>?P [21.4 (9.8) kcal/mol]?>?S [12.3 (5.0) kcal/mol]. The resulting $ \left\{ {\gamma - \left[ {\left( {^{ \cdot } {\text{O}}} \right) {\text{Ru}}^{\text{IV}} \left( {\mu - {\text{OH}}} \right)_{2} {\text{Ru}}^{\text{IV}} \left( {{\text{O}}^{ \cdot } } \right)} \right]\left[ {{\text{X}}^{{{\text{n}} + }} {\text{W}}_{10} {\text{O}}_{36} } \right]} \right\}^{{\left( {8 - {\text{n}}} \right) - }} $ , VI_X, complex was found to have two RuIV?=?O· units, rather than RuV?=?O units. The ??reverse?? reaction, i.e., water oxidation by VI_X is an endothermic process and unlikely to occur for X?=?Si and P, while it could occur for X?=?S under specific conditions. The lack of reactivity of VI_X biradical toward the water molecule leads to the formation of the stable [{Ru 4 IV O4(OH)2(H2O)4}[(??-XW10O36]2}m? dimer. This conclusion is consistent with our experimental findings; previously we prepared the $ \left[ {\left\{ {{\text{Ru}}_{4}^{\text{IV}} {\text{O}}_{4} ({\text{OH}})_{2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{4} } \right\}} \right[\left( {\gamma - {\text{XW}}_{10} {\text{O}}_{36} } \right]_{2} \}^{{{\text{m}} - }} $ dimers for X?=?Si (m?=?10) [Geletii et al. in Angew Chem Int Ed 47:3896?C3899, 2008 and J Am Chem Soc 131:17360?C17370, 2009] and P (m?=?8) [Besson et al. in Chem Comm 46:2784?C2786, 2010] and showed them to be very stable and efficient catalysts for the oxidation of water to O2.  相似文献   

16.
A new d10 coordination polymer, \(\left\{ {\left( {{\text{C}}_{5} {\text{H}}_{14} {\text{N}}_{2} } \right)_{2} \left[ {{\text{Cd}}\left( {\left( {{\text{P}}_{6} {\text{O}}_{18} } \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right)} \right] \cdot 6{\text{H}}_{2} {\text{O}}} \right\}_{n}\), was prepared and characterized by X-ray diffraction, IR-Raman spectroscopy, thermal analysis and cyclic voltammetry. The crystal structure determination reveals that the phosphate anions alternate with the cadmium octahedral to form an anionic coordination polymer extending along [001] direction. The double protonated homopiperazine cations and the water molecules ensure the interconnection between polymers and thus giving rise to three dimensional supramolecular networks. By means of cyclic voltammetry, it is shown that whilst the reduction of the complexed Cd2+ occurs with a biggest difficulty than this of its free form, the anodic oxidation of the heterocyclic N donor piperazine became quite easy, when it is displayed as a counterpart diprotonated cation, between the anionic layers of \(\left[ {{\text{Cd}}({\text{P}}_{6} {\text{O}}_{18} )({\text{H}}_{2} {\text{O}})_{2} )} \right]_{\text{n}}^{{4{\text{n}} - }}\). The antibacterial activity of the coordination polymer is also discussed.  相似文献   

17.
The kinetics and mechanism of the reduction of enneamolybdonickelate(IV) by arsenite in aqueous acid solution was studied by spectrophotometry. The reaction rate increases with increasing concentrations of H+ and with temperature. The associated rate law is: . The rate constants and activation parameters of the rate-determining step were evaluated. A mechanism related to this reaction was proposed.  相似文献   

18.
For some thirty hydrocarbons the s character of hybrids obtained by the application of the maximum overlap method have been correlated with C-H and C-C spin-spin coupling constants. The following relationships were obtained: $$J_{{\text{C}}^{{\text{13}}} - {\text{H}}} = 1079a_{{\text{CH}}}^{\text{2}} /(1 + S_{{\text{CH}}}^{\text{2}} ) - 54.9$$ , $$J_{{\text{C}}_{\text{1}}^{{\text{13}}} - {\text{C}}_{\text{2}}^{{\text{13}}} } = 1020.5a_{{\text{C}}_{\text{1}} }^2 a_{{\text{C}}_{\text{2}} }^{\text{2}} /(1 + S_{{\text{CC}}}^{\text{2}} ) - 8.2$$ . Here the coupling constants are expressed in cps units. In the calculation of the maximum overlap hybrids either the experimental bond lengths or a standard bond lengths were used. For the \(J_{{\text{C}}^{{\text{13}}} - {\text{H}}}\) and \(J_{{\text{C}}^{{\text{13}}} - {\text{H}}} \) coupling constants the standard deviations are 0.9 cps and 1.9 cps respectively. It has been suggested that the large additive constant in the \(J_{{\text{C}}^{{\text{13}}} - {\text{H}}}\) correlation may be attributed to the ionic character of C-H bonds. A good agreement with the experimental data strongly supports the idea that the Fermi contact term and the hybridization are dominant factors in determining carbon-hydrogen and carbon-carbon spin-spin coupling constants across one bond, at least in hydrocarbons.  相似文献   

19.
The thermodynamics of the stepwise complexation reaction of Cm(III) with propionate was studied by time resolved laser fluorescence spectroscopy (TRLFS) and UV/Vis absorption spectroscopy as a function of the ligand concentration, the ionic strength and temperature (20–90 °C). The molar fractions of the 1:1 and 1:2 complexes were quantified by peak deconvolution of the emission spectra at each temperature, yielding the log10 $ K_{n}^{\prime } $ values. Using the specific ion interaction theory (SIT), the thermodynamic stability constants log10 $ K_{n}^{0} (T) $ were determined. The log10 $ K_{n}^{0} (T) $ values show a distinct increase by 0.15 (n = 1) and 1.0 (n = 2) orders of magnitude in the studied temperature range, respectively. The temperature dependency of the log10 $ K_{n}^{0} (T) $ values is well described by the integrated van’t Hoff equation, assuming a constant enthalpy of reaction and $ \Updelta_{\text{r}} C^\circ_{{p,{\text{m}}}} = 0, $ yielding the thermodynamic standard state $ \left( {\Updelta_{\text{r}} H^\circ_{\text{m}} ,\Updelta_{\text{r}} S^\circ_{\text{m}} ,\Updelta_{\text{r}} G^\circ_{\text{m}} } \right) $ values for the formation of the $ {\text{Cm(Prop)}}_{n}^{3 - n} $ , n = (1, 2) species.  相似文献   

20.
The standard molar Gibbs free energy of formation of ZnRh2O4(s) has been determined using an oxide solid-state electrochemical cell wherein calcia-stabilized zirconia (CSZ) was used as an electrolyte. The oxide cell can be represented by: . The electromotive force was measured in the temperature range from 943.9 to 1,114.2 K. The standard molar Gibbs energy of formation of ZnRh2O4(s) from elements in their standard state using the oxide electrochemical cell has been calculated and can be represented by: . Standard molar heat capacity C o p,m(T) of ZnRh2O4(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges, from 127 to 299 and 307 to 845 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: . The heat capacity of ZnRh2O4(s), was used along with the data obtained from the oxide electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号