首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ebarvia BS  Cabanilla S  Sevilla F 《Talanta》2005,66(1):145-152
An approach for preparing a chemical sensor for caffeine through the combination of molecularly imprinted polypyrrole and a piezoelectric quartz transducer was proposed. The caffeine-imprinted polymer was synthesized using galvanostatic electropolymerization of pyrrole monomer directly onto one of the gold electrodes of a 9 MHz AT-cut quartz crystal in the presence of caffeine. The optimum conditions for the electrosynthesis of the reagent phase were established. Caffeine molecules were entrapped in the matrix of polymer film, and were removed by subsequent washing with water, leaving behind pores capable of recognizing the target analyte molecule.The caffeine sensor was fixed in a measuring cell and measurement of the resonant frequency of the quartz crystal as it comes in contact with the caffeine solution was carried out in a stopped flow mode. A steady-state response was achieved in about 10 min. The sensor exhibited a linear relationship between the frequency shift and the ln of caffeine concentration in the range of 0.1-10 mg/mL (correlation coefficient, r = 0.9882). The sensitivity of the sensor was about 255 Hz/ln concentration (mg/mL). A good repeatability, R.S.D. = 9 (n = 6) for 0.5 mg/mL caffeine solution was also observed. The use of the sensor can present a potential low-cost option for determining caffeine.Surface analytical techniques such as scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were performed on the polymer coating in order to elucidate the imprinting process and rebinding of caffeine to the polymer matrix during the sensing process. The SEM micrographs and XPS spectra revealed features and structures that could support the imprinting and recognition of caffeine molecule by the imprinted polymer.  相似文献   

2.
Surface imprinting techniques on polymer-coated quartz-crystal microbalances (QCM) have been used to detect tobacco mosaic viruses (TMV) in aqueous media. Molecularly imprinted polymers (MIP), tailor-made by self organisation of monomers around a template (TMV), were generated directly on the gold electrodes. Imprinted trenches on the polymer surface mimicking the shape and surface functionality of the virus serve as recognition sites for re-adsorption after washing out of the template. The sensors are applicable to TMV detection ranging from 100 ng mL–1 to 1 mg mL–1 within minutes. Furthermore, direct measurements without time-consuming sample preparation are possible in complex matrices such as tobacco plant sap.Dedicated to Professor Dr. W. Fresenius on the occasion of his 90th birthday  相似文献   

3.
A piezoelectric quartz crystal (PQC) sensor based on a molecularly imprinted polymer (MIP) has been developed for enantioselective and quantitative analysis of d-(+)-methamphetamine (d(+)-MA). The sensor was produced by bulk polymerization and the resulting MIP was then coated on the gold electrode of an AT-cut quartz crystal. Conditions such as volume of polymer coating, curing time, type of PQC, baseline solvent, pH, and buffer type were found to affect the sensor response and were therefore optimized. The PQC-MIP gave a stable response to different concentrations of d(+)-MA standard solutions (response time = 10 to 100 s) with good repeatability (RSD = 0.03 to 3.09%; n = 3), good reproducibility (RSD = 3.55%; n = 5), and good reversibility (RSD = 0.36%; n = 3). The linear range of the sensor covered five orders of magnitude of analyte concentration, ranging from 10−5 to 10−1 μg mL−1, and the limit of detection was calculated as 11.9 pg d(+)-MA mL−1 . The sensor had a highly enantioselective response to d(+)-MA compared with its response to l(−)-MA, racemic MA, and phentermine. The developed sensor was validated by applying it to human urine samples from drug-free individuals spiked with standard d(+)-MA and from a confirmed MA user. Use of the standard addition method (SAM) and samples spiked with d(+)-MA at levels ranging from 1 × 10−3 to 1 × 10−2 μg mL−1 showed recovery was good (95.3 to 110.9%).  相似文献   

4.
Imidacloprid is a new insecticide with a wide range of action. Because honeybees are very sensitive to this substance, two techniques (HPLC–UV and GC–MS) which enable its detection in several matrices of both animal and vegetable origin were used to monitor its possible presence in cultivated land. In the first method quantification of imidacloprid in honeybees was achieved by use of the external standard method; the detection limit was 50 mg kg–1, the linear range 0.05–1 mg mL–1, recovery 60–83%, and the imprecision (coefficient of variation) 8.6% for repeatability and 11.8% for reproducibility. Recovery from pollen was 71–98% in the range 0.05–0.5 mg kg–1. The repeatability was 9.2–13.9%. Imidacloprid can often be found in the environment, not as a simple molecule but as a group of degradation products. The GC–MS method could be used to quantify all these species as oxidation products and to determine the initial quantity of imidacloprid by use of a conversion factor. The liquid chromatographic analysis could be used to detect, in a standard solution, 10 ng mL–1 derivatized 6-chloronicotinic acid. The linearity was good (R=0.999) over a wide concentration range (10 g mL–1–10 ng mL–1). Several samples with different matrices (filter paper placed on an pneumatic corn seed drill, grass, flowers, honeybees, etc.) obtained during the sowing period for imidacloprid-treated corn were analyzed. The quantification limit (LOQ) was 0.005 mg kg–1 for grass and flowers, 0.002 mg kg–1 for honeybees, and 0.024 mg kg–1 for paper filters.  相似文献   

5.
Lakshmi D  Prasad BB  Sharma PS 《Talanta》2006,70(2):272-280
Molecularly imprinted polymers (MIP) have been elucidated to work as artificial receptors. In our present study, a MIP was applied as a molecular recognition element to a chemical sensor. We have constructed a creatinine sensor based on a MIP layer selective for creatinine and its differential pulse, cathodic stripping voltammetric detection (DPCSV) on a hanging mercury drop electrode (HMDE). The creatinine sensor was fabricated by the drop coating of dimethylformamide (DMF) solution of a creatinine-imprinted polymer onto the surface of HMDE. The modified-HMDE, preanodised in neutral medium at +0.4 V versus Ag/AgCl for 120 s, exhibited a marked enhancement in DPCSV current in comparison to the less anodised (≤+0.3 V) HMDE. The creatinine was preconcentrated and instantaneously oxidised in MIP layer giving DPCSV response in the concentration range of 0.0025-84.0 μg mL−1 [detection limit (3σ) 1.49 ng mL−1]. The sensor was found to be highly selective for creatinine without any response of interferents viz., NaCl, urea, creatine, glucose, phenylalanine, tyrosine, histidine and cytosine. The non-imprinted polymer-modified electrode did not show linear response to creatinine. The imprinting factor as high as 9.4 implies that the imprinted polymer exclusively acts as a recognition element of creatinine sensor. The proposed procedure can be used to determine creatinine in human blood serum without any preliminary treatment of the sample in an accurate, rapid and simple way.  相似文献   

6.
In this work, a molecular sol–gel imprinting approach has been introduced to produce a fiber coating for selective direct immersion solid-phase microextraction (SPME) of caffeine. The polymerization mixture was composed of vinyl trimethoxysilane and methacrylic acid as vinyl sol–gel precursor and functional monomer, respectively. Caffeine was used as template molecule during polymerization process. The prepared fibers could be coupled directly to gas chromatography/mass spectrometry (GC/MS) and used for trace analysis of caffeine in a complex sample such as human serum. The parameters influencing SPME such as time, temperature and stirring speed were optimized. The prepared coating showed good selectivity towards caffeine in the presence of some structurally related compounds. Also, it offered high imprinting capability in comparison to bare fiber and non-imprinted coating. Linear range for caffeine detection was 1–80 μg mL−1 and the limit of detection was 0.1 μg mL−1. The intra-day and inter-day precisions of the peak areas for five replicates were 10 and 16%, respectively.  相似文献   

7.
A flow injection method is proposed for the determination of naftopidil based upon the oxidation by potassium permanganate in a sulfuric acid medium and sensitized by formaldehyde and formic acid. The optimum chemical conditions for the chemiluminescence emission were 0.25 mM potassium permanganate and 4.0 M sulfuric acid. Two manifolds were tested and instrumental parameters such as the length of the reactor, injection volume and flow rate were compared. When using the selected manifold in the presence of 0.4 M formaldehyde, naftopidil gives a second-order calibration graph over the concentration range 0.1–40.0 mg L–1 with a detection limit calculated (as proposed by IUPAC) of 92.5 ng mL–1 and a standard deviation of 0.12 mg mL–1 for ten samples of 10.0 mg L–1 naftopidil. In the presence of 1.15 M formic acid, naftopidil gives a second-order calibration graph over the concentration range 0.05–40.0 mg L–1 with a detection limit of 14.2 ng mL–1 and a standard deviation of 0.37 mg mL–1 for ten samples of 10.0 mg L–1 naftopidil. In both cases, the determination is free from interferences from common excipients such as sucrose, glucose, lactose, starch and citric acid.  相似文献   

8.
An isocratic liquid chromatographic method for determination of acetaminophen (AMP), caffeine (CAF), chlorphenamine maleate (CPM) and guaiacol glyceryl ether (GGE) in a compound cold formulation is described. Separation and quantitation were achieved on a Diamonsil C18 column using a binary mixture of methanol and 1.5% aqueous acetic acid (55: 45, v/v, pH 3.6) as mobile phase delivered at 0.4 mL min–1. Single wavelength detection was at 220 nm for all four drugs and the run time was < 10 min. The linearity, accuracy and precision of the method were found to be acceptable over the concentration ranges: 16.0–127.8 g mL–1 for AMP, 6.0–48.2 g mL–1 for CAF, 5.0–40.0 g mL–1 for CPM and 10.1–80.6 g mL–1 for GGE.  相似文献   

9.
Pfeffer  M.  Walenciak-Reddel  E. 《Chromatographia》1994,38(7-8):479-484
Summary A high-performance liquid chromatographic method is discribed for the determination of 6-amino-2,2-dimethyl-1,3-dioxepan-5-ol using Spherisorb ODS II stationary phase and mobile phase 30:70 (v/v) methanol: aqueous 1-octane sulfonic acid. Detection was fluorimetric following postcolumn derivatization with o-phthaladehyde/2-mercaptoethanol. The procedure was applied to the analysis of aqueous solutions and microcrystalline suspensions in liquid paraffin, prepared for investigation of the toxicological profile. The method was validated for selectivity, linearity of detector response, repeatability, limit of detection and quantitation. The HPLC method was selective. The instrumental limit of detection was 0.5 ng per injection (0.05 g mL–1). The method detection limits were 0.5 g mL–1 aqueous solution and 5 g mL–1 liquid paraffin suspension, the quantitation limit 0.05 mg mL–1 aqueous solution and 1.0 mg mL–1 liquid paraffin. Linearity was within 0.94–47.1 g mL–1. Intra-assay accuracy accounted for 99–100% in the range 0.05–226 mg mL–1 aqueous solution, intra-assay precision for 2% (C.V.). For microcrystalline liquid paraffin suspensions with 1 and 250 mg mL–1 99 and 109% was found for intra-assay accuracy. Intra-assay precision was 5% (C.V.). Reliable results over a wide concentration range can be obtained. The procedure is considered valid for determination of the analyte in aqueous solution or microcrystalline paraffin oil suspensions.  相似文献   

10.
A novel molecularly imprinted polymer solid-phase extraction (MISPE) with flow-injection chemiluminescence (CL) was developed for the determination of pazufloxacin mesilate (PZFX). The molecularly imprinted polymer (MIP) was synthesized by using PZFX as the imprinting molecule. A glass tube packed the particles of the MIP was employed as MISPE micro-column, which was connected into the sampling loop of the eight-way injection valve for on-line selective preconcentration and extraction of PZFX. The eluent of acetonitrile:acetic acid (9:1, v:v) was used as carrier for eluting the adsorbed PZFX to react with the mixture of cerium(IV) and sodium sulfite in the flow cell to produce strong CL. The relative intensity of CL was linear to PZFX concentration in the range from 2.5 × 10−9 to 2.5 × 10−7 g mL−1. The limit of detection was 7 × 10−10 g mL−1 (3 σ) and the relative standard deviation for 5 × 10−8 g mL−1of PZFX solution was 3.7% (n = 7). This method has been applied to the determination of PZFX in human urine.  相似文献   

11.
A flow injection method using 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol-(Nitro-PAPS) as a new chromogenic reagent is presented for sensitive and rapid determination of vanadium. Nitro-PAPS reacts with vanadium(V) in weakly acidic medium to form a water soluble complex of molar absorptivity of 8.0 × 104L mol–1 cm–1 at 592 nm (maximum absorption wavelength), which permits the straightforward application of a flow injection system to the sensitive determination of vanadium. Under the optimum conditions established, a linear calibration graph was obtained in the range 1–120 ng mL–1. The relative standard deviation for 60 ng mL–1 vanadium was 2.2% (n = 5) and the limit of detection was 1 ng mL–1. The sample throughput is about 40 h–1. Most inorganic and organic anions examined did not interfere even at concentrations of 3000–6000 times of vanadium. Interference from cobalt(II), copper(II) and nickel(II) at 200ng mL–1 levels can be overcome by the addition of N-(dithio-carboxy)sarcosine. The recoveries for each 20 and 10 ng mL–1 vanadium added to the river water were 98 and 97%, respectively.The authors express their thanks to Miss Miho Suzuki and Miss Hiroyo Yamada for their experimental assistance in part.  相似文献   

12.
A chemical sensor for tungstate ions has been developed and implemented in two versions on the basis of the poorly soluble nickel(II) hexatungstonickelate(II) heteropoly compound. The electrode function is linear within the range 10–5–10–1 M tungsten for the film electrode and within the range 10–4–10–1 M tungsten for the coated wire electrode at pH 6–9. The slope of the electrode function is 28–29 mV. The time it takes to attain an equilibrium electrode potential is 1–5 min, depending on the ion concentration to be determined. The selectivity coefficients are found for the tungstate-selective electrode in the presence of chloride, sulfate, nitrate, and perchlorate.  相似文献   

13.
Highly sensitive flow-injection chemiluminescence (CL) combined with molecularly imprinted solid-phase extraction (MISPE) has been used for determination of 2,4-dichlorophenol (2,4-DCP) in water samples. The molecularly imprinted polymer (MIP) for 2,4-DCP was prepared by non-covalent molecular imprinting methods, using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EGDMA) as the monomer and cross-linker, respectively. 2,4-DCP could be selectively adsorbed by the MIP and the adsorbed 2,4-DCP was determined by its enhancing effect on the weak chemiluminescence reaction between potassium permanganate and luminol. The enhanced CL intensity was linear in the range from 1 × 10−7 to 2 × 10−5g mL−1. The LOD (S/N = 3) was 1.8 × 10−8g mL−1, and the relative standard deviation (RSD) was 3.0% (n = 11) for 1.4 × 10−6g mL−1. The proposed method had been successfully applied to the determination of 2,4-DCP in river water. Figure Effect of 4-VP content on the ultraviolet spectrum of 2,4-DCP in chloroform  相似文献   

14.
A novel and highly sensitive chemiluminescence (CL) method for the determination of terbutaline sulfate, coupled with flow-injection analysis (FIA), is described in this paper. The method is based on enhancement by terbutaline sulfate of the chemiluminescence emission of the luminol–permanganate system under alkaline conditions. Under the conditions selected the concentration of terbutaline sulfate is proportional to CL intensity in the range 5×10–10–5×10–7 g mL–1, with a detection limit of 1.7×10–10 g mL–1 (3). The relative standard deviation is 2.8% for 1×10–8 g mL–1 terbutaline sulfate (n=11). Ninety samples can be determined per hour. The proposed method has been used to determine terbutaline sulfate in pharmaceutical preparations and in plasma and urine samples with satisfactory results. The possible mechanism of the chemiluminescence reaction is discussed briefly.  相似文献   

15.
A highly sensitive piezoelectric biosensor has been developed for detection of cholinesterase inhibitors. The inhibitor benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO) was immobilized on a monolayer of 11-mercaptomonoundecanoic acid (MUA) self-assembled on the gold surface of the sensor. The binding of high-molecular-weight cholinesterase to the immobilized cocaine derivative was monitored with a mass sensitive piezoelectric quartz crystal (quartz crystal nanobalance; QCN). In the presence of an inhibiting substance in the sample, the binding of cholinesterase to the immobilized inhibitor was reduced. The decrease of the rate of mass change was proportional to the concentration of free inhibitor in the sample. This way the affinity sensor followed anti-cholinesterase toxicity and the enzyme activity of ChE was not addressed. A assay for detection of organophosphates (OP) was optimized. Regeneration of the sensor surface was achieved with 1 mol L–1 formic acid, which enabled 40 measurements with one sensor. All assays were carried out in a flow-through arrangement. The total measurement time (binding+regeneration) was 25 min and the detection limit for different OP (paraoxon, diisopropylfluorophosphate, chlorpyriphos, and chlorfenvinphos) was down to 10–10 mol L–1 (0.02 g L–1). This sensor was used for determination of organophosphate (diisopropylfluorophosphate) levels in river water samples.Dedicated to the memory of Wilhelm Fresenius  相似文献   

16.
A sensitive and specific method was developed for the determination of sophoridine (SRI), sophocarpine (SC) and matrine (MT) in rabbit plasma by HPLC-MS. After an administration of Kuhuang by injection, blood samples were collected and extracted with methanol. The extract solutions were analysed by HPLC-MS method. The separation was performed on a ZORBAX Extend-C18 column using methanol/water/diethylamine (50:50:0.07, v/v/v) as mobile phase. The quinolizidine alkaloids were detected by using mass spectrometry in the SIM mode. There was a good linear relationship between peak area and concentration of analytes over the concentration range of 13.2–995.0 ng mL–1 for SRI, 7.0–530.0 ng mL–1 for SC and 8.8–655.0 ng mL–1 for MT, respectively. The absolute recovery of this method was more than 57% for SRI, 87% for SC and 91% for MT. The accuracy of assay was more than 90%. The limits of detection (LODs) were 6.8 ng mL–1 for SRI, 3.5 ng mL–1 for SC and 4.2 ng mL–1 for MT, respectively. The limits of quantitation (LOQs) were 13.2 ng mL–1 for SRI, 7.0 ng mL–1 for SC and 8.8 ng mL–1 for MT, respectively. The intra-day and inter-day coefficients of variation (RSDs) were less than 10.1, 6.3 and 5.8% for SRI, SC and MT, respectively. The developed method was applied to determine the concentration–time profiles of SRI, SC and MT in rabbit plasma after injection of Kuhuang.  相似文献   

17.
A bisphenol A (BPA) molecularly imprinted polymer, the composition of which was optimised using a chemometric approach, has been applied to the selective preconcentration of the template from aqueous samples. The selectivity of the polymer toward BPA and related compounds was evaluated chromatographically. The BPA-imprinted polymer was packed in a column and used for continuous on-column solid-phase extraction (MISPE) of aqueous samples followed by subsequent analysis by HPLC with fluorescence detection of the eluted fractions. The composition of the washing solvent applied in the MISPE procedure was optimised to favour the specific interactions of the MIP with BPA and to remove the non-selectively bound matrix components. The MISPE method has proven to be effective for selective preconcentration of BPA in aqueous samples (recoveries >84% obtained in the eluate for 10–100 mL sample volumes) enabling detection and quantification limits of 1.0 and 3.3 ng mL–1, respectively (based on 25 mL sample size). Analytical recoveries were between 92 and 101% for river water samples spiked with known amounts of BPA (30, 60, and 80 ng mL–1); relative standard deviations (RSD) were lower than 5.0%.  相似文献   

18.
A molecularly imprinted polymer (MIP) based capacitive sensor for antibiotic detection in drinking water and milk has been developed on a gold coated silicon electrode (Au Electrode). The electrode was fabricated by electropolymerizing monomer resorcinol (RN) on Au surface in presence of sulphanilamide (SN) as a template molecule, to get insulated RN polymer antibiotic composite. The insulation of the polymer film was improved by incubation of electrode in 1‐Dodecanethiol solution. Subsequently MIP sensor was obtained by extraction of SN in ethanol and acetic acid solution. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were performed for characterization of the developed MIP electrode at different steps of fabrication. The surface morphology of MIP electrode was characterized using atomic force microscopy (AFM), X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x‐ray spectroscopy (EDS). Performance of MIP sensor was evaluated by measuring change in capacitance against varying concentration of SN using EIS. A linear response in the range 1 to 200 μg L?1 SN was recorded for MIP sensor with a detection limit of 0.1 μg L?1. The developed MIP sensor exhibited good selectivity towards SN in water and milk with recoveries in the range 92 % to 105 %. The obtained results suggest the usability of MIP based sensor for SN estimation in water and milk samples.  相似文献   

19.
The efficiency of polyaniline (PANI), coated gold wire was investigated for use as a fiber for solid-phase microextraction (SPME). Aniline monomers were electropolymerized on gold wires by applying a constant current to an acetate buffer containing NaClO4 as supporting electrolyte for 30 min. These fibers were used for the extraction of some aliphatic alcohols from gaseous samples. The results obtained proved the ability of PANI fiber for sampling organic compounds from gaseous samples. From this work, optimum conditions for preparation and conditioning of fibers and for the extraction of analytes from gaseous samples were obtained. Under optimum conditions, one fiber was used for several equivalent analyses and the relative standard deviations (RSD) were <7% (n=6). However, fiber to fiber reproducibility was <9% (n=6). This fiber is firm and durable and is simply prepared. Calibration graphs were linear in the range: 0.1–10 g mL–1 for aliphatic alcohols; the detection limit range was 15–75 ng mL–1 (S/N=3) using a flame ionization detector.  相似文献   

20.
Molecularly imprinted polymers (MIPs) for screening to detect rubber latex allergens (Hev b1) in natural rubber based products were designed as artificial recognition polymeric materials coated onto a quartz crystal microbalance (QCM). The polymers were prepared using a stamp imprinting procedure after mixing optimum amounts of methacrylic acid–vinylpyrrolidone–dihydroxyethylene bisacrylamide and Hev b1 latex allergen proteins, obtained from rubber gloves. QCM measurements showed that the resulting polymer layers after removal of the proteins used in their preparation could incorporate structures and features down to nanometer scale of protein templates into the imprinted polymer much better than a non-specific control polymer under controlled sensor conditions and an optimized polymerization process. This selective polymer but not the non-selective polymer clearly distinguished between the latex allergen Hev b1 and proteins such as lysozyme, ovalbumin and bovine serum albumin, with a selectivity factor of from 2 to 4, and the response of the rubber elongation factors by an astonishing factor of 12. The imprinted cavities recognized specific binding sites and could distinguish among related hevein latex allergenic proteins isolated from fresh natural rubber latex; Hev b1, Hev b2, and Hev b3 with a selectivity factor of from 4 to 6. The different QCM measurements obtained presumably reflected slightly different conformations and affinities to the MIP binding sites. The sensor layers selectively adsorbed Hev b1 within minutes in amounts ranging from 10 to 1500 μg L−1 and with a detection limit of 1 μg L−1. This work has demonstrated that this new sensor provides a fast and reliable response to natural rubber latex protein, even after being extracted from the matrix of rubber gloves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号