首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly sensitive and selective chemical sensor was prepared based on metallic copper‐copper oxides and zinc oxide decorated graphene oxide modified glassy carbon electrode (Cu?Zn/GO/GCE) through an easily electrochemical method for the quantification of bisphenol A (BPA). The composite electrode was characterized via scanning electron microscopy (SEM), X‐Ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of BPA in Britton‐Robinson (BR) buffer solution (pH 7.1) was examined using cyclic voltammetry (CV). Under optimized conditions, the square wave voltammetry (SWV) response of Cu?Zn/GO/GCE towards BPA indicates two linear relationships within concentrations (3.0 nmol L?1?0.1 μmol L?1 and 0.35 μmol L?1?20.0 μmol L?) and has a low detection limit (0.88 nmol L?1). The proposed electrochemical sensor based on Cu?Zn/GO/GCE is both time and cost effective, has good reproducibility, high selectivity as well as stability for BPA determination. The developed composite electrode was used to detect BPA in various samples including baby feeding bottle, pacifier, water bottle and food storage container and satisfactory results were obtained with high recoveries.  相似文献   

2.
An electrochemical sensor for amoxicillin (AMX) detection based on reduced graphene oxide (RGO), molecular imprinted overoxidized polypyrrole (MIOPPy) modified with gold nanoparticles (AuNPs) is described in this work. The electrochemical behavior of the imprinted and non‐imprinted polymer (NIP) was carried out by cyclic voltammetry (CV) and impedance spectroscopy (IS). The structure and morphology of the prepared MIP sensor were characterized by scanning electron microscopy (SEM), UV‐Visible, Fourier transform infrared spectroscopy (FTIR) and its experimental parameters such as monomer and template concentration, pH buffer solution, incubation time of AMX and AuNPs, scan rate as well as electropolymerization scan cycles were optimized to improve the performance of the sensor. The peak current obtained at the MIP electrode was proportional to the AMX concentration in the range from 10?8 to 10?3 mol L?1 with a detection limit and sensitivity of 1.22 10?6 mol L?1 (Signal to noise ratio=3) and 2.52×10?6 μAmol?1 L, respectively. It was also found that this sensor exhibited reproducibility and excellent selectivity against molecules with similar chemical structures. Besides, the analytical application of the AMX sensor confirms the feasibility of AMX detection in milk and human serum.  相似文献   

3.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

4.
The nature of binding between Terazosin (TR) and gold nanoparticles (Au‐Nps) is investigated using UV‐vis and fluorescence spectroscopies, cyclic voltammetry, SEM, and EIS. The results suggest that Au‐Nps are effective carriers for TR. An electrochemical sensor for TR is introduced using Au‐Nps electrodeposited on carbon paste electrode. The effect of parameters including pH and scan rate on the response was investigated. A linear range from 8.0×10?9 to 5.4×10?5 mol L?1 with correlation coefficient of 0.9995 and detection limit of 1.2×10?10 mol L?1 was obtained. This sensor was used for determining TR spiked in urine, and excellent recovery results are achieved.  相似文献   

5.
An electrochemical creatinine sensor based on a molecularly imprinted polymer (MIP)‐modified sol‐gel film on graphite electrode was developed. The surface coating of MIP over sol‐gel was advantageous to obtain a porous film with outwardly exposed MIP cavities for unhindered selective rebinding of creatinine from aqueous and biological samples. A fast differential pulse, cathodic stripping voltammetric response of creatinine can be obtained after being preanodized the sensor in neutral medium containing appropriate amount of creatinine at +1.8 V versus SCE for 120 s. A linear response over creatinine concentration in the range of 1.23 to 100 μg mL?1 was exhibited with a detection limit of 0.37 μg mL?1 (S/N=3).  相似文献   

6.
分子印迹聚合物修饰电化学晶体管检测抗坏血酸分子   总被引:1,自引:0,他引:1  
以抗坏血酸(AA)为模板分子、邻苯二胺(o-PD)为功能单体,在金电极表面电聚合制备分子印迹聚合物膜(MIP),并以该MIP修饰的电极为栅极制备了具有高选择性、高灵敏度的AA电化学晶体管(OECT)传感器件。应用循环伏安法(CV)、交流阻抗法(EIS)对分子印迹聚合物电极进行一系列的表征与检测。实验结果表明:以pH=5.2,浓度为0.2mol/L HAc-NaAc(体积比2.1∶7.9)的缓冲液为背景溶液,o-PD与AA的物质的量之比为1∶2,以0.5V/s的扫描速率在0~0.8V内扫描20圈,所得分子印迹膜电极性能最佳。应用以该分子印迹修饰电极作为栅极的电化学晶体管检测AA,得到AA浓度的检测限为0.3μmol/L,沟道电流与AA浓度在0.3~3μmol/L(低浓度)与3~100μmol/L(高浓度)这2个范围内成线性关系。  相似文献   

7.
A new voltammetric sensor based on molecularly imprinted poly(acrylic acid)‐MWCNT nanocomposite (MIP‐MWCNT) drop‐coated onto glassy carbon electrode (GCE) was developed and applied to tramadol (TR) determination in pharmaceutical samples. The voltammetric sensor prepared by suspension of MIP‐MWCNT at 1 : 1 (w/w) ratio show an improved performance compared to unmodified GCE. The electrochemical method is based on preconcentration of tramadol onto MIP‐MWCNT modified GCE surface at ?1.5 V vs Ag/AgCl for 180 s in 0.1 Britton‐Robinson buffer (pH 8.0) at stirred solution. Upon preconcentration, the differential anodic voltammogram was recorded under the optimized condition giving rise to an analytical curve varying from 9.0 up to 30.0 μmol L?1 (R2=0.997) and limits of detection and quantification of 1.4 and 4.8 μmol L?1, respectively. The method precision was assessed in terms of intraday (n=6) and interday (two consecutive days) precision, giving relative standard deviations (RSD%) values between 2.8 to 7.4 %. Excipients usually found in pharmaceutical pills (magnesium stearate, microcrystalline cellulose, starch, and silica) and paracetamol were evaluated as potential interferents, however no interference was evidenced in TR determination. The method applicability was evaluated by TR analysis in pharmaceutical samples. Moreover, the method accuracy was attested by comparison of addition and recovery assays with a reference technique (high‐performance liquid chromatography).  相似文献   

8.
Dicloran pesticide is used to inhibit the fungal spore germination for different crops. Because of the increasing application of pesticides, reliable and accurate analytical methods are necessary. The aim of this work is designing the highly selective sensor to determine the dicloran in biological and environmental samples. Multi-walls carbon nanotubes and a molecularly imprinted polymer (MIP) were used as modifiers in the sensor composition. A dicloran MIP and a nonimprinted polymer (NIP) were synthesized and applied in the carbon paste electrode. After the optimization of electrode composition, it was used to determine the concentration of analyte. Parameters affecting the sensor response were optimized, such as sample pH, electrolyte concentration and its pH, and the instrumental parameters of square wave voltammetry. The MIP-CP electrode showed very high recognition ability in comparison with NIP-CP. The obtained linear range was 1 × 10?6 to 1 × 10?9 mol L?1. The detection limit was 4.8 × 10?10 mol L?1. This sensor was used to determine the dicloran in real samples (human urine, tap and river water samples) without special sample preparation before analysis. All important parameters were optimized, improving the sensor response considerably.  相似文献   

9.
《Electroanalysis》2017,29(8):1867-1875
A capacitive immunosensor for determination of sulphathaizole (STZ) has been developed on polymer coated indium tin oxide glass chip (ITO). The immunosensor chip was fabricated by polymerizing, ortho‐ phenylenediamine (o PD) on ITO followed by surface modification with anti‐sulphathiazole antibody. The developed immunosensor chip was characterized by using Atomic force microscopy (AFM), Cyclicvoltammetry (CV) and Electrochemical impedance spectroscopy (EIS). The capacitive measurement of the developed immunosensor was performed by using EIS in spiked drinking water and milk. The developed sensor showed liner detection range 0.1‐100 μgL−1for STZ with a limit of detection 0.01 μgL−1 in water with recovery between 95–106 %. The biosensor showed excellent selectivity and storage stability upto 4 weeks when preserved at 4 °C.  相似文献   

10.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

11.
Wang Z  Li H  Chen J  Xue Z  Wu B  Lu X 《Talanta》2011,85(3):1672-1679
A novel electrochemical sensor based on molecularly imprinted polymer film has been developed for aspirin detection. The sensitive film was prepared by co-polymerization of p-aminothiophenol (p-ATP) and HAuCl(4) on the Au electrode surface. First, p-ATP was self-assembled on the Au electrode surface by the formation of Au-S bonds. Then, the acetylsalicylic acid (ASA) template was assembled onto the monolayer of p-ATP through the hydrogen-bonding interaction between amino group (p-ATP) and oxygen (ASA). Finally, a conductive hybrid membrane was fabricated at the surface of Au electrode by the co-polymerization in the mixing solution containing additional p-ATP, HAuCl(4) and ASA template. Meanwhile, the ASA was spontaneously imprinted into the poly-aminothiophenol gold nanoparticles (PATP-AuNPs) complex film. The amount of imprinted sites at the PATP-AuNPs film significantly increases due to the additional replenishment of ASA templates. With the significant increasing of imprinted sites and doped gold nanoparticles, the sensitivity of the molecular imprinted polymer (MIP) electrode gradually increased. The molecularly imprinted sensor was characterized by electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The linear relationships between current and logarithmic concentration were obtained in the range from 1 nmol L(-1) to 0.1 μmol L(-1) and 0.7 μmol L(-1) to 0.1 mmol L(-1). The detection limit of 0.3 nmol L(-1) was achieved. This molecularly imprinted sensor for the determination of ASA has high sensitivity, good selectivity and reproducibility, with the testing in some biological fluids also has good selectivity and recovery.  相似文献   

12.
《Electroanalysis》2004,16(7):524-531
In this work we report a new electrode material formed by injection‐moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury‐free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8 μg L?1 to 30 mg L?1 (with deposition times ranging from 30 s to 10 min) with a relative standard deviation of 2.2% (at the 0.5 mg L?1 level) and a limit of detection of 8 μg L?1 Cu(II) for 10 min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap‐water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively  相似文献   

13.
Superoxide dismutase (SOD) plays an important role in nearly all living cells. In this study, SOD imprinted poly(ionic liquid)s (SIPILs) were prepared on the surface of the bare Au electrode modified with nano‐palladium and nano‐gold (Au/nPd/nAu/SIPILs). SIPILs was synthesized with 1‐vinyl‐3‐propyl imidazole sulfonate ionic liquids as functional monomers via electrochemically mediated atom transfer radical polymerization (eATRP) catalyzed by SOD. The Au/nPd/nAu/SIPILs was examined by cyclic voltammetry (CV), scanning electron microscope (SEM), energy‐dispersive spectrometer (EDS) and X‐ray photoelectron spectroscopy (XPS). The Au/nPd/nAu/SIPILs was also used as an electrochemical sensor to determine SOD by differential pulse voltammetry (DPV). Under the optimal conditions, the detection range of SOD was from 1.0×10?8 to 1.0×102 mg L?1 with a limit of detection of 8.90×10?9 mg L?1 (S/N=3). Compared with other methods, the sensor based on SIPILs had the broader linear range and lower detection limit.  相似文献   

14.
A new electrochemical sensor based on nanostructured carbon paste electrodes (CPEs) is developed for the sensitive detection of Isoproturon in water. The CPEs were nanostructured by incorporation of carbon nanotubes (NTCs) and synthetized copper oxide nanoparticles (CuO). They were characterized using the X‐ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and voltammetric methods. Electrochemical experiments showed that the adsorption of Isoproturon on to (GC‐NTC‐CuO)‐CPE, associated with nanomaterials (NTCs and CuO), provided remarkable analytical performances of the sensor such as a large quantification range from 1 to 200 μg L?1 with a detection limit of 0.1 μg L?1 of Isoproturon and no interferences of some another pesticides tested (specificity of ISO adsorption in acidified water). The tests carried out on real samples of water are conclusive. The analytical performances of the sensor showed that it is suitable for the specific determination of pesticide traces in water.  相似文献   

15.
Yan Zhang  Jing Zheng  Mandong Guo 《中国化学》2016,34(12):1268-1276
An innovative molecularly imprinted electrochemical sensor was fabricated based on reduced graphene oxide (RGO) and gold nanocomposite (Au) for rapid detection of vincristine (VCR). The RGO‐Au composite membrane was obtained via direct one‐step electrodeposition technique of graphene oxide (GO) and chloroauric acid (HAuCl4) on the surface of a glassy carbon electrode (GCE) by means of cyclic voltammetry (CV) in the potential range between ?1.5 and 0.6 V in phosphate buffer solution (PBS) of pH 9.18, which is capable of effectively utilizing its superior electrical conductivity, larger specific surface area due to its synergistic effect between RGO and Au. The molecularly imprinted polymers (MIPs) were synthesized on the RGO‐Au modified glassy carbon electrode surface with VCR as the template molecular, methyl acrylic acid (MAA) as the functional monomer, and ethylene glycol maleic rosinate acrylate (EGMRA) as a cross‐linker. The performance of the sensor was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) in detail. Under the optimum conditions, the fabricated sensor exhibited a linear relationship between oxidation peak current and VCR concentration over the range of 5.0×10?8–5.0×10?6 mol·L minus;1 with a correlation coefficient of 0.9952 and a detection limit (S/N=3) of 2.6×10minus;8 mol·Lminus;1. The results indicated that the imprinted polymer films exhibited an excellent selectivity for VCR. The imprinted sensor was successfully used to determine VCR in real samples with recoveries of 90% –120% by using the standard addition method.  相似文献   

16.
A 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS)‐multiwalled carbon nanotubes (MWCNTs) nanocomposite/Bi film modified glassy carbon (GC) electrode was constructed for the differential pulse stripping voltammetric determination of trace Pb2+ and Cd2+. This electrode was more sensitive than ABTS‐free Bi/GC and Bi/MWCNTs/GC electrodes. Linear responses were obtained in the range from 0.5 to 35 μg L?1 for Cd2+ and 0.2 to 50 μg L?1 Pb(II), with detection limits of 0.2 μg L?1 for Cd2+ and 0.1 μg L?1 for Pb2+, respectively. This sensor was applied to the simultaneous detection of Cd2+ and Pb2+ in water samples with satisfactory recovery.  相似文献   

17.
In this study, a sensitive nicotinamide adenine dinucleotide (NADH) biosensor based on Au‐Copper oxide nanocomposite modified carbon ceramic electrode (Au?CuO/CCE) was introduced. The developed NADH biosensor was prepared by controlled electrodeposition of copper and Au nanoparticles on the surface of a renewable CCE and was turned to Au?CuO/CCE by cycling the potential in alkaline media. The prepared electrode was carefully characterized with scanning electron microscopy, X‐ray diffraction, atomic force microscopy and cyclic voltammetry techniques. According to scan rate study, surface coverage (Γ) of the fabricated Au?CuO/CCE was calculated to be 1.54×10?8 mol cm?2 which was 3 time more than CuO/CCE. The fabricated electrode is well stable which could be reliably utilized for the determination of NADH with amperometry technique over the concentration range of 1–29 μM with sensitivity and detection limit (S/N=3) of 0.1025 μA μM?1 and 0.09 μM respectively. The prepared biosensor was used for NADH determination in serum samples with fast response time and satisfactory analytical results.  相似文献   

18.
The SAM nanoSe0/Vc/SeCys‐film modified Au electrode has been prepared to determine selenocystine and selenomethionine. The AFM and SEM showed the special three‐dimensional (3D) network structure of the sol‐gel films. The affinity between nanoparticles and biomolecules created special chemical characters analyzed by the XRD and fluorescence. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified films partly had resistance in the charge transduction of Fe(CN) , but the less electron‐transfer resistance. Differential pulse voltammetric (DPV) determination of selenoamino acids using SAM nanoSe0/Vc/SeCys‐film modified Au electrode was presented. In PBS (pH 7.0)+0.1 mol L?1 NaClO4 solution, selenoamino acids yielded a sensitive reduction peak at about +400±50 mV. The peak current had a linear relationship with the concentration of selenoamino acids in the range of 5.0×10?8–1.0×10?5 mol L?1, and a 3σ detection limit of selenoamino acids was 1.2×10?8 mol L?1. The relative standard deviation of DPV signals of 0.50×10?6 mol L?1 selenoamino acids was 3.8% (n=8) using the same electrode and was 4.4% (n=5) when using three modified electrodes prepared at different times. The content of selenoamino acids in the organo‐selenium powder were determined by DPV. The results showed 71.5 μg g?1 of SeCys and 65.1 μg g?1 of SeMet in the organo‐selenium powder.  相似文献   

19.
《Electroanalysis》2004,16(9):736-740
A new enzyme‐based amperometric biosensor for hydrogen peroxide was developed relying on the efficient immobilization of horseradish peroxidase (HRP) to a nano‐scaled particulate gold (nano‐Au) film modified glassy carbon electrode (GC). The nano‐Au film was obtained by a chitosan film which was first formed on the surface of GC. The high affinity of chitosan for nano‐Au associated with its amino groups resulted in the formation of nano‐Au film on the surface of GC. The film formed served as an intermediator to retain high efficient and stable immobilization of the enzyme. H2O2 was detected using hydroquinone as an electron mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano‐Au film maintained excellent electrocatalytical activity to the reduction of H2O2. The experimental parameters such as the operating potential of the working electrode, mediator concentration and pH of background electrolyte were optimized for best analytical performance of amperometry. The linear range of detection for H2O2 is from 6.1×10?6 to 1.8×10?3 mol L?1 with a detection limit of 6.1 μmol L?1 based on signal/noise=3. The proposed HRP enzyme sensor has the features of high sensitivity (0.25 Almol?1cm?2), fast response time (t90%≤10 s) and a long‐term stability (>1 month). As an extension, glucose oxidase (GOD) was chemically bound to HRP‐modified electrode. A GOD/HRP bienzyme‐modified electrode formed in this way can be applied to the determination of glucose with satisfactory performance.  相似文献   

20.
In this study, electrochemical immunosensors were developed for the detection of prostate specific antigen (PSA) using ferrocene (Fc) and polyamidoamine dendrimer (PAMAM) constructs. The biosensor fabrication was designed by modifying the screen‐printed gold electrode (Au) with ferrocene cored dendrimers (FcPAMAM) synthesized in three different generations. The self‐assembled monolayer principle was followed, to obtain sensitive, selective and disposable electrodes. Therefore, the Au electrodes were modified with cysteamine (Cys) to obtain a functional surface for FcPAMAM dendrimers to bind. Dendrimer generations were attached to this surface using a cross‐linker (glutaraldehyde) so that a suitable surface was obtained for binding of biological components. The Monoclonal PSA antibody (anti‐PSA) was immobilized on the Au electrode surface which coated with dendrimer, and (Au/Cys/FcPAMAM/anti‐PSA) biosensing electrode was obtained. The PSA detection performances of electrochemical impedance spectroscopy (EIS) and Amperometry based immunosensors exhibited very low detection limits; 0.001 ng mL?1 and 0.1 pg mL?1, respectively. In addition, EIS and Amperometry based biosensors using Au/Cys/FcPAMAM/anti‐PSA sensing electrode were represented excellent linear ranges of 0.01 ng mL?1 to 100 ng mL?1 and 0.001 ng mL?1 to 100 ng mL?1. In order to determine the applicability recovery and selectivity tests were performed using three different proteins in human serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号