首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of arsenic species in marine samples by HPLC-ICP-MS.   总被引:1,自引:0,他引:1  
Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).  相似文献   

2.
复杂基体中痕量多环芳烃分析测定方法的研究进展   总被引:15,自引:0,他引:15  
董新艳  杨亦文  任其龙 《色谱》2005,23(6):609-615
介绍了环境样品(水和土壤)以及植物油中痕量多环芳烃的分析检测方法。对样品的预处理过程和分析方法做了评价。采用一些新的预处理方法(包括液相色谱法、固相萃取法、超临界二氧化碳萃取法),并结合色谱-质谱在线联用分析检测方法能够获得比较理想的分析结果。引用文献52篇。  相似文献   

3.
The determination of actinides in environmental soil and sediment samples are very important for environmental monitoring. A rapid actinide separation method has been developed and implemented that allows measurement of U, Pu and Am isotopes in large soil samples (10–15 g) with high chemical yields and effective removal of matrix interferences. The radiochemical procedures involve the total dissolution of soil samples, separation on anion-exchange resin, and separation and purification by extraction chromatography, e.g., UTEVA, TEVA, and TRU with measurements of radionuclides by alpha-spectrometry. The validation of the method is performed through the analysis of reference materials or by participating in laboratory intercomparison programs.  相似文献   

4.
Arsenic speciation analysis in marine samples was performed using ion chromatography (IC) with inductively coupled plasma mass spectrometry (ICP‐MS) detection. The separation of eight arsenic species, viz. arsenite, monomethyl arsonic acid, dimethylarsinic acid, arsenate, arsenobetaine, tetramethylarsine oxide, arsenocholine and tetramethylarsonium ion was achieved on a Dionex AS4A (weaker anion exchange column) by using a nitric acid pH gradient eluent (pH 3.3 to 1.3). The entire separation was accomplished in 12 min. The detection limits for the eight arsenic species by IC–ICP‐MS were in the range 0.03–1.6 µ g l?1, based on 3σ of the blank response (n = 6). The repeatability and day‐to‐day reproducibility were calculated to be less than 10% (residual standard deviation) for all eight species. The method was validated by analyzing a certified reference material (DORM‐2, dogfish muscle) and then successfully applied to several marine samples, e.g. oyster, fish muscle, shrimp and marine algae. The low power microwave digestion was employed for the extraction of arsenic from seafood products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Monitoring pollutants in water samples is a challenge to analysts. In recent years, separation technology based on magnetic materials has received considerable attention. This article reviews the literature dealing with the application of magnetic materials, combined with other materials (e.g., silica, octadecylsilane, polymers and surfactants), to the separation and the preconcentration of pollutants in water samples. The magnetic extraction method is not only convenient, economical and highly efficient, but it also overcomes problems with conventional solid-phase extraction, (e.g., packing of sorbent into the column and time-consuming loading of large-volume samples).  相似文献   

6.
A method has been developed for the simultaneous determination of antifouling pesticides and some of their degradation products, e.g. dichlofluanid, diuron, demethyldiuron, 1-(3,4-dichlorophenyl)urea, sea-nine, Irgarol 1051 and one of its metabolites (2-methylthio-4-tert-butylamino-s-triazine) in marine sediments. The determination of these compounds in sediment samples was performed by means of methanolic ultrasonic extraction then clean-up on an Isolute ENV+ solid phase extraction (SPE) cartridge. The resulting extract was then analyzed by reversed-phase high-performance liquid chromatography coupled with atmospheric-pressure chemical-ionization mass spectrometry in negative and positive ion modes (HPLC-APCI-MS). Recovery ranged from 54-109% for the antifouling agents and their degradation products. The determination limits for the different compounds varied between 0.2 and 1.6 microg kg(-1) dry sediment. The analytical procedure was successfully applied to the determination of these pesticides and their degradation products in marine sediment samples from different marinas of the Catalan coast. The compounds detected were: diuron, dichlofluanid, demethyldiuron, sea-nine, and Irgarol 1051. The highest concentrations were those of diuron and Irgarol 1051--136 and 88 microg kg(-1), respectively.  相似文献   

7.
A new and fast method for the determination of priority phenols in marine sediment samples by high-performance liquid chromatography using microwave-assisted micellar extraction is optimized. This study is carried out using the nonionic surfactants polyoxyethylene 9 lauryl ether (polidocanol) and genapol X-080 as extractants. Parameters studied include surfactant concentration, solution pH, extraction time, and power. Once the method is optimized, it is applied to different spiked marine sediments from of the Canary Islands coastlines (Spain). The results obtained indicate that a power irradiation of 500 W for 2 min achieved the best extraction efficiency (approximately 100% recovery) and less than 10% relative standard deviation. Detection limits are obtained in the 2-20 microg/g range for the phenols studied. Finally, the proposed method provides a simple, fast, and organic solvent-free procedure to analyze phenols from marine sediment samples.  相似文献   

8.
A method was developed for the extraction of seven N-nitrosamine compounds from water by solid-phase microextraction (SPME). The method developed requires a total analysis time of only 1.25 h for both extraction and detection (versus 3-20 h for other isolation techniques). Three gas chromatography (GC) detection systems were tested with the SPME method, nitrogen chemiluminesence detection (NCD), nitrogen-phosphorus detection (NPD) and chemical ionization mass spectrometry (CI-MS), with method detection limits (MDLs) found in the ng/L range. This method was used to analyze wastewater samples and showed excellent selectivity of extraction. The detection limits of this method for N-nitrosodimethylamine (NDMA) range from 30 to 890 ng/L as a function of detector type. The excellent selectivity of SPME in addition to the fast analysis time would make this method ideal for general surveys, wastewater analysis and laboratory studies (e.g. degradation kinetics or formation potential).  相似文献   

9.
程嘉雯  马继平  李爽  田永 《色谱》2022,40(10):872-881
作为一种常见的溴代阻燃剂,六溴环十二烷(HBCDs)因具备持久性、长距离迁移性、生物蓄积性和高毒性,于2013年被列入《斯德哥尔摩公约》。因此,环境样品中HBCDs污染水平的准确分析和严格控制对完善环境监管长效机制至关重要。然而,实际样品中HBCDs的定性定量分析正面临着基质复杂、目标物含量低等问题。尤其,HBCDs在高温环境及特定有机溶剂中易降解,会产生异构体,提高了分析难度。该综述简述了HBCDs的理化性质、毒性危害和标准限制,重点围绕不同基质中HBCDs的样品前处理和仪器检测两方面进行了总结。论文内容引用2000~2022年的70余篇源于科学引文索引(SCI)与中文核心期刊中的相关论文。总结归纳了固体和液体样品中HBCDs分析的前处理技术,包括索式提取、超声辅助萃取、加速溶剂萃取、超临界流体萃取、液液萃取、分散液液微萃取、固相萃取、分散固相萃取和固相微萃取等,介绍了气相色谱、液相色谱和色谱-质谱联用技术等仪器检测方法在HBCDs分析中的应用。通过综述近期相关研究,侧面表明HBCDs的分析方法研究发展迅速,但也面临一些挑战,如样品前处理步骤繁琐、耗时长、样品量和有机溶剂用量大等问题。最后,对新型样品前处理技术在HBCDs分析中的应用进行了展望。  相似文献   

10.
Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP–MS detection. Separation of eight arsenic species—AsIII, MMA, DMA, AsV, AB, TMAO, AC and TeMAs+—was achieved on a C18 column with isocratic elution (pH 3.0), under which conditions AsIII and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC–ICP–MS detection limits for the eight arsenic species were in the range 0.03–0.23 μg L−1 based on 3σ for the blank response (n=5). The precision was calculated to be 2.4–8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18–9.59 μg g−1. This paper was presented at the European Winter Conference 2005  相似文献   

11.
Akiyama R  Takagai Y  Igarashi S 《The Analyst》2004,129(5):396-397
The proposed method was successful in the determination and separation of lower sub ppt levels of polycyclic aromatic hydrocarbons (PAHs). In this study, a new phase separation phenomenon (i.e., homogeneous liquid-liquid extraction) was developed that rapidly and simply separated an immiscible liquid phase from water-miscible organic solvents. One liter of sample solution was preconcentrated by a solid phase extraction method, then the obtained eluate (5 mL) was further preconcentrated to just 20 microL by this homogeneous liquid-liquid extraction. The 20 [micro sign]L sedimented phase was directly injected into the high-performance liquid chromatography with fluorescence detection (FL-HPLC). The entire preconcentration factor was 50,000-fold. Six kinds of PAHs were determined in the range of 3.0 x 10(-18) approximately 4.5 x 10(-11) mol L(-1). These chemicals were also satisfactorily separated.  相似文献   

12.
Wu S  Xu Z  Yuan Q  Tang Y  Zuo X  Lai J 《Journal of chromatography. A》2011,1218(10):1340-1346
The homogeneous molecularly imprinted microspheres (MIMs) based on a biologically inspired hydrogen-bond array were prepared using allobarbital as the novel functional monomer and divinylbenzene as the cross-linker. The host-guest binding characteristics were examined by molecular simulation and infrared spectroscopy. The resultant MIMs were evaluated using high performance liquid chromatography and solid-phase extraction. The results obtained demonstrate that the good imprinting effect and the excellent selectivity of MIMs are mainly due to the interaction involving the formation of three-point hydrogen bond between host and guest. The complete baseline separation was obtained for five triazine analogues and a metabolite on the MIM HPLC column. The MIMs were further successfully used as a specific sorbent for selective extraction of simetryne from corn and soil samples by molecularly imprinted solid phase extraction. Detection limits and recoveries were 5.8 μg/kg and 0.14 μg/kg and 87.4-105% and 94.6-101% for simetryne in corn and soil sample, respectively.  相似文献   

13.
This article summarizes the current methods of determination of non-structural carbohydrates (NSCs) in plant samples based on liquid chromatography (LC). NSCs comprise several types of carbohydrates: sugar alcohols (e.g., sorbitol), monosaccharides (e.g., glucose and fructose), disaccharides (e.g., sucrose), oligosaccharides (e.g., raffinose) and polysaccharides [e.g., starch and polyfructans (e.g., inulin)]. NSCs are important in plant metabolism and have to be strictly distinguished from all sorts of structural carbohydrates (e.g., polysaccharide cellulose) that make up the backbone of the plants. Consequently, preservation of structural carbohydrates is a crucial step during sample preparation for NSC determination and is therefore addressed.Sugar alcohols, monosaccharides, disaccharides and those oligosaccharides that are easily soluble in polar solvents can be analyzed directly by high-performance LC. They are also referred to as free carbohydrates (FCs).However, polysaccharides are generally submitted to hydrolyzation into monomers prior to their quantitative analysis. This can be done either chemically, using acids, or enzymatically - both methods are discussed. For identification and quantification of the NSCs after LC separation, the following detectors are used: pulsed amperometry, refractive index, evaporate light scattering and finally, mass spectrometry.  相似文献   

14.
An analytical method is presented for the determination of sulfophenylcarboxylic acids (SPC) produced by the biodegradation of linear alkylbenzene sulfonates (LAS) in marine samples. Isolation and concentration of the compounds was by solid-phase extraction. The different factors affecting extraction efficiency packing composition, pH, clean-up, ionic strength, and elution solvents--were studied and optimized. With the proposed method C4-C13SPC and C10-C13 LAS recoveries varied between 65% and 105%, with standard deviations between 0.1 and 5, respectively, for 100-mL samples and 100 microg L(-1) concentrations of each homolog. Detection limits within the range 0.5 g L(-1) (for C4SPC) to 1.0 g L(-1) (for C12SPC) were obtained by liquid chromatography with fluorescence detection. This method is the first to be proposed that enables the simultaneous determination of monocarboxylic SPC (C>3) and LAS homologs in marine samples by a simple, sensitive, and specific method giving high recoveries and reproducibility. SPC with from three to twelve carbon atoms in the carboxyl chain have been found in marine water samples.  相似文献   

15.
Analysing herbicides in soil is a complex issue that needs validation and optimization of existing methods. An extraction and analysis method was developed to assess concentrations of glyphosate, glufosinate and aminomethylphophonic acid (AMPA) in field soil samples. After testing extractions by accelerated solvent extraction and ultrasonic extraction, agitation was selected with the best recoveries. Water was preferred as solvent extraction because it resulted in a cleaner chromatogram with fewer impurities than was the case with alkaline solvents. Analysis was performed by FMOC pre-column derivatization followed by high-performance liquid chromatography (HPLC) on a 300 mm C(18) column which permitted enhanced separation and sensitivity than a 250 mm C(18) column and increased resistance than the NH(2) column for soil samples. This extraction and analysis method allowing a minimum of steps before the injection in the HPLC with fluorescence detection is efficient and sensitive for a clay-loamy soil with detection limits of 103 μg kg(-1) for glyphosate, 15 μg kg(-1) for glufosinate and 16 μg kg(-1) for AMPA in soil samples.  相似文献   

16.
An on-column trace enrichment method for capillary electrochromatography of dilute samples is described. It involves the sequential use of frontal and elution electrochromatography on a segmented capillary column comprising of two contiguous segments each packed with a different sorbent. While the entering segment is for preconcentration by frontal electrochromatography the second segment is much longer and is meant for separation of the enriched analytes in the subsequent elution electrochromatography step. The preconcentration segment is usually packed with a sorbent that affords the highest affinity towards the solutes of interest while the separation segment is packed with a stationary phase that exhibits the highest selectivity and separation efficiency for the analytes. The detection is performed in the UV using a z-cell configuration for achieving an increased path length for detection. The effectiveness of this on-column trace enrichment is demonstrated on dilute samples of moderately polar solutes (e.g., carbamate insecticides) and nonpolar solutes (e.g., pyrethroid insecticides). Under optimal frontal and elution electrochromatography conditions. 817- and 1100-fold sensitivity increase are achieved for permethrin (a pyrethroid insecticide) and methiocarb (a carbamate insecticide), respectively, with a UV detector. The method is demonstrated with real water samples (e.g., tap and lake water samples) spiked with carbamate and pyrethroid insecticides. The limits of detection for the pesticides achieved in tap and lake waters reached 10(-8) to 10(-9) M.  相似文献   

17.
Choy TM  Chan WH  Lee AW  Huie CW 《Electrophoresis》2003,24(18):3116-3123
The feasibility of employing the "acetonitrile stacking" method in micellar electrokinetic chromatography (MEKC) for the on-line preconcentration and separation of enantiomers is demonstrated for the first time. The effects of various experimental parameters on the stacking and separation of three different pairs of optical isomers, i.e., two substituted naphthyl enantiomers and one dansylated-DL-amino acid, were examined. In particular, the effectiveness of the addition of acetonitrile and salt in the sample matrix to induce narrowing of the analyte bands was investigated in the presence of sodium cholate as the chiral surfactant micelle in the separation buffer. For example, it was found that the presence of both acetonitrile and 1% NaCl in the sample matrix (volume ratio = 2:1) led to a significant improvement of the peak height and resolution for the MEKC separation of a pair of R(-)/S(+)-1,1'-binaphthyl diyl hydrogen phosphate enantiomers when the injection sample size was relatively large (e.g., 12% capillary volume). Furthermore, the feasibility of combining salting-out solvent extraction (off-line) and acetonitrile stacking (on-line) as a novel approach for sample preconcentration in capillary electrophoresis was also demonstrated.  相似文献   

18.
The characterization of alcohol-ethoxylate substances is a significant challenge in analytical science. Their importance in industry and society makes it necessary to have methods for their rapid, reliable characterization and quantification. This overview highlights the instrumental separation techniques for their analysis - chromatographic (e.g., gas, liquid and supercritical fluid chromatography) and electrophoretic (e.g., capillary, gel, capillary zone, and non-aqueous capillary electrophoresis and micellar electrokinetic chromatography). We summarize and explain analytical parameters for their characterization. We include selected references and examples to show the appropriateness of instrumental separation techniques for the analytical characterization of alcohol-ethoxylate substances.  相似文献   

19.
Comprehensive analytical methods based on pressurized liquid extraction followed by normal-phase liquid chromatography (NPLC) with ultraviolet detection and reversed-phase liquid chromatography (RPLC)/electrospray mass spectrometry (MS) have been developed for determination of alkylphenol ethoxylates (APEOs) in textile samples. NPLC with an aminosilica column allowed for the chromatographic separation of APEOs according to the increasing number of ethylene units and revealed the exact distribution of individual oligomers. RPLC coupled with electrospray MS was highly sensitive and enabled the complete qualitative and quantitative determination of individual APEOs in textile samples. The 2 analytical methods based on different chromatographic separation mechanisms, i.e., NPLC and RPLC, may provide complementary information of APEOs in textile materials. The 2 detection methods were successfully applied to the investigation of various textile samples, and the data of our research suggested actual pollution in real textile products.  相似文献   

20.
A method has been developed for the determination of linear alkylbenzene sulfonates and its degradation intermediates (sulfophenylcarboxylic acids) from different marine organisms, which includes the stages of extraction and analysis by liquid chromatography with fluorescence detection. The extraction stage (Soxhlet and solid-phase extractions) was optimised by the selection of the appropriate solvent, minicolumns and different clean-up stages. Recoveries varied in the range from 80 to 104%, with a standard deviation between 1 and 9%. Detection limits were 15 ng g(-1) wet mass for undecylbezene sulfonate and 30 ng g(-1) wet mass for sulfophenylundecanoic acid using HPLC-fluorescence detection. The complete analytical method was successfully applied to different marine organisms from the Bay of Cadiz (SW Spain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号