首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A dynamic programming method is presented for solving constrained, discrete-time, optimal control problems. The method is based on an efficient algorithm for solving the subproblems of sequential quadratic programming. By using an interior-point method to accommodate inequality constraints, a modification of an existing algorithm for equality constrained problems can be used iteratively to solve the subproblems. Two test problems and two application problems are presented. The application examples include a rest-to-rest maneuver of a flexible structure and a constrained brachistochrone problem.  相似文献   

2.
We propose an SQP-type algorithm for solving nonlinear second-order cone programming (NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which the constraints involve linear approximations of the constraint functions in the original problem and the objective function is a convex quadratic function. Those subproblems can be transformed into linear SOCP problems, for which efficient interior point solvers are available. We establish global convergence and local quadratic convergence of the algorithm under appropriate assumptions. We report numerical results to examine the effectiveness of the algorithm. This work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science.  相似文献   

3.
Projected gradient methods for linearly constrained problems   总被引:23,自引:0,他引:23  
The aim of this paper is to study the convergence properties of the gradient projection method and to apply these results to algorithms for linearly constrained problems. The main convergence result is obtained by defining a projected gradient, and proving that the gradient projection method forces the sequence of projected gradients to zero. A consequence of this result is that if the gradient projection method converges to a nondegenerate point of a linearly constrained problem, then the active and binding constraints are identified in a finite number of iterations. As an application of our theory, we develop quadratic programming algorithms that iteratively explore a subspace defined by the active constraints. These algorithms are able to drop and add many constraints from the active set, and can either compute an accurate minimizer by a direct method, or an approximate minimizer by an iterative method of the conjugate gradient type. Thus, these algorithms are attractive for large scale problems. We show that it is possible to develop a finite terminating quadratic programming algorithm without non-degeneracy assumptions. Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38. Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-Eng-38.  相似文献   

4.
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.  相似文献   

5.
The formulation of interior point algorithms for semidefinite programming has become an active research area, following the success of the methods for large-scale linear programming. Many interior point methods for linear programming have now been extended to the more general semidefinite case, but the initialization problem remained unsolved.In this paper we show that the initialization strategy of embedding the problem in a self-dual skew-symmetric problem can also be extended to the semidefinite case. This method also provides a solution for the initialization of quadratic programs and it is applicable to more general convex problems with conic formulation.  相似文献   

6.
In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported. Project supported by the National Natural Science Foundation (No. 10261001), Guangxi Science Foundation (Nos. 0236001, 064001), and Guangxi University Key Program for Science and Technology Research (No. 2005ZD02) of China.  相似文献   

7.
Branch and cut methods for integer programming problems solve a sequence of linear programming problems. Traditionally, these linear programming relaxations have been solved using the simplex method. The reduced costs available at the optimal solution to a relaxation may make it possible to fix variables at zero or one. If the solution to a relaxation is fractional, additional constraints can be generated which cut off the solution to the relaxation, but donot cut off any feasible integer points. Gomory cutting planes and other classes of cutting planes are generated from the final tableau. In this paper, we consider using an interior point method to solve the linear programming relaxations. We show that it is still possible to generate Gomory cuts and other cuts without having to recreate a tableau, and we also show how variables can be fixed without using the optimal reduced costs. The procedures we develop do not require that the current relaxation be solved to optimality; this is useful for an interior point method because early termination of the current relaxation results in an improved starting point for the next relaxation.  相似文献   

8.
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points depend on the index of the Hessian matrix of the total cost function. The global and local extrema of the nonconvex quadratic function can be identified by the triality theory [11]. Results show that if the global extrema of the nonconvex quadratic function are located on the boundary of the primal feasible space, the dual solutions should be interior points of the dual feasible set, which can be solved by deterministic methods. Certain nonconvex quadratic programming problems in {\open {R}}^{n} can be converted into a dual problem with only one variable. It turns out that a complete set of solutions for quadratic programming over a sphere is obtained as a by-product. Several examples are illustrated.  相似文献   

9.
A model for estimating power shortage in electric power systems with quadratic losses of power in transmission lines is studied. This model is designed to analyze problems of reliability of electric power systems. A method of presentation of this model in the form of a convex programming problem is given. An interior point algorithm is proposed for model implementation. This algorithm takes into account quadratic approximations of constraints functions. Results of the experimental study of the algorithm are presented.  相似文献   

10.
 In the vicinity of a solution of a nonlinear programming problem at which both strict complementarity and linear independence of the active constraints may fail to hold, we describe a technique for distinguishing weakly active from strongly active constraints. We show that this information can be used to modify the sequential quadratic programming algorithm so that it exhibits superlinear convergence to the solution under assumptions weaker than those made in previous analyses. Received: December 18, 2000 / Accepted: January 14, 2002 Published online: September 27, 2002 RID="★" ID="★" Research supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. Key words. nonlinear programming problems – degeneracy – active constraint identification – sequential quadratic programming  相似文献   

11.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

12.
《Optimization》2012,61(4):585-600
In this article, a constraint shifting homotopy method (CSHM) is proposed for solving non-linear programming with both equality and inequality constraints. A new homotopy is constructed, and existence and global convergence of a homotopy path determined by it are proven. All problems that can be solved by the combined homotopy interior point method (CHIPM) can also be solved by the proposed method. In contrast to the combined homotopy infeasible interior point method (CHIIPM), it needs a weaker regularity condition. And the starting point in the proposed method is not necessarily a feasible point or an interior point, so it is more convenient to be implemented than CHIPM and CHIIPM. Numerical results show that the proposed algorithm is feasible and effective.  相似文献   

13.
This paper proposes an efficient computational technique for the optimal control of linear discrete-time systems subject to bounded disturbances with mixed linear constraints on the states and inputs. The problem of computing an optimal state feedback control policy, given the current state, is non-convex. A recent breakthrough has been the application of robust optimization techniques to reparameterize this problem as a convex program. While the reparameterized problem is theoretically tractable, the number of variables is quadratic in the number of stages or horizon length N and has no apparent exploitable structure, leading to computational time of per iteration of an interior-point method. We focus on the case when the disturbance set is ∞-norm bounded or the linear map of a hypercube, and the cost function involves the minimization of a quadratic cost. Here we make use of state variables to regain a sparse problem structure that is related to the structure of the original problem, that is, the policy optimization problem may be decomposed into a set of coupled finite horizon control problems. This decomposition can then be formulated as a highly structured quadratic program, solvable by primal-dual interior-point methods in which each iteration requires time. This cubic iteration time can be guaranteed using a Riccati-based block factorization technique, which is standard in discrete-time optimal control. Numerical results are presented, using a standard sparse primal-dual interior point solver, that illustrate the efficiency of this approach.  相似文献   

14.
Interior projection-like methods for monotone variational inequalities   总被引:1,自引:0,他引:1  
We propose new interior projection type methods for solving monotone variational inequalities. The methods can be viewed as a natural extension of the extragradient and hyperplane projection algorithms, and are based on using non Euclidean projection-like maps. We prove global convergence results and establish rate of convergence estimates. The projection-like maps are given by analytical formulas for standard constraints such as box, simplex, and conic type constraints, and generate interior trajectories. We then demonstrate that within an appropriate primal-dual variational inequality framework, the proposed algorithms can be applied to general convex constraints resulting in methods which at each iteration entail only explicit formulas and do not require the solution of any convex optimization problem. As a consequence, the algorithms are easy to implement, with low computational cost, and naturally lead to decomposition schemes for problems with a separable structure. This is illustrated through examples for convex programming, convex-concave saddle point problems and semidefinite programming.The work of this author was partially supported by the United States–Israel Binational Science Foundation, BSF Grant No. 2002-2010.  相似文献   

15.
We will propose a new cutting plane algorithm for solving a class of semi-definite programming problems (SDP) with a small number of variables and a large number of constraints. Problems of this type appear when we try to classify a large number of multi-dimensional data into two groups by a hyper-ellipsoidal surface. Among such examples are cancer diagnosis, failure discrimination of enterprises. Also, a certain class of option pricing problems can be formulated as this type of problem. We will show that the cutting plane algorithm is much more efficient than the standard interior point algorithms for solving SDP.  相似文献   

16.
We show how a direct active set method for solving definite and indefinite quadratic programs with simple bounds can be efficiently implemented for large sparse problems. All of the necessary factorizations can be carried out in a static data structure that is set up before the numeric computation begins. The space required for these factorizations is no larger than that required for a single sparse Cholesky factorization of the Hessian of the quadratic. We propose several improvements to this basic algorithm: a new way to find a search direction in the indefinite case that allows us to free more than one variable at a time and a new heuristic method for finding a starting point. These ideas are motivated by the two-norm trust region problem. Additionally, we also show how projection techniques can be used to add several constraints to the active set at each iteration. Our experimental results show that an algorithm with these improvements runs much faster than the basic algorithm for positive definite problems and finds local minima with lower function values for indefinite problems.Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000.  相似文献   

17.
Dynamic programming techniques have proven to be more successful than alternative nonlinear programming algorithms for solving many discrete-time optimal control problems. The reason for this is that, because of the stagewise decomposition which characterizes dynamic programming, the computational burden grows approximately linearly with the numbern of decision times, whereas the burden for other methods tends to grow faster (e.g.,n 3 for Newton's method). The idea motivating the present study is that the advantages of dynamic programming can be brought to bear on classical nonlinear programming problems if only they can somehow be rephrased as optimal control problems.As shown herein, it is indeed the case that many prominent problems in the nonlinear programming literature can be viewed as optimal control problems, and for these problems, modern dynamic programming methodology is competitive with respect to processing time. The mechanism behind this success is that such methodology achieves quadratic convergence without requiring solution of large systems of linear equations.  相似文献   

18.
研究了单输入多时滞的离散时间系统的线性二次调节问题(LQR问题),给出了求解最优控制输入序列的一种简单有效而又新颖的方法.将该动态的离散时滞系统的LQR最优控制问题最终转化成了一个静态的、不带时滞的数学规划模型——带等式线性约束的严格凸二次规划问题,并利用两种方法解这个二次规划问题,均成功地导出了系统的最优控制输入序列.仿真结果验证了我们的方法的正确有效性.  相似文献   

19.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. In a first part we consider boundary control problems with either Dirichlet or Neumann conditions. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. It is shown that a recently developed interior point method is able to solve these problems even for high discretizations. Several numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang-bang and singular controls. The necessary conditions of optimality are checked numerically in the presence of active control and state constraints.  相似文献   

20.
在本文中,基于神经网络,提出了一类求解具有线性约束区间二次规划问题的方法,使用增广拉格朗日函数,建立了求解规划问题的神经网络模型。基于压缩不动点理论,证明了所提出神经网络的平衡点就是等式约束区间二次规划问题的最优解。使用适当的Lyapunov函数,证明了所提出的神经网络的平衡点是全局指数稳定的。最后,两个数值仿真结果验证了本文所用方法的可行性与有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号