首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
两性/阴离子表面活性剂形成具有耐盐性能的蠕虫状胶束   总被引:1,自引:0,他引:1  
利用流变学方法研究了两性表面活性剂十四烷基磺基甜菜碱(TDAPS)和阴离子表面活性剂十二烷基硫酸钠(SDS)混合体系中蠕虫状胶束的耐盐性能, 分析了二价金属离子对蠕虫状胶束微观结构的影响. 结果表明, 在加入MgCl2和CaCl2使Mg2+和Ca2+总浓度达到0~1900 mg/L的情况下, TDAPS/SDS体系中形成的蠕虫状胶束的粘弹性能和耐剪切能力不仅没有损失而且增强. 对静态流变和动态流变结果进一步分析表明体系中同时存在两种可区分尺寸的蠕虫状胶束. 加入二价金属离子, 体系的微观结构发生了由小尺寸蠕虫状胶束向大尺寸蠕虫状胶束转变, 同时, 大尺寸蠕虫状胶束线性增长并发生枝化. 两性表面活性剂头基上的正电荷中心减小了蠕虫状胶束的反离子结合程度, 抑制了线性生长到枝化生长的过程, 使体系表现出优异的耐盐性能.  相似文献   

2.
阴、阳离子表面活性剂之间强烈的相互作用利于形成自由弯曲的蠕虫状胶束。本文利用阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和阴离子表面活性剂油酸钠(Na OA)制备了CTAB/Na OA蠕虫状胶束,研究了两表面活性剂的混合比和表面活性剂总浓度的变化对蠕虫状胶束体系稳态流变性及动态粘弹性的影响。结果表明,蠕虫状胶束在剪切过程中的解缠、拟网状结构的破坏以及最终沿剪切速度方向取向等是蠕虫状胶束产生剪切稀释特性的原因。两表面活性剂的混合比和表面活性剂总浓度的变化导致表面活性剂之间的静电作用、疏水作用发生较大的变化,最终引起体系内部表面活性剂聚集体形态的差异。体系内蠕虫状胶束长度、体系结构复杂程度、蠕虫状胶束形成的网络结构的致密度等都影响着体系的流变行为。在混合比R=3.6、总浓度CT=0.24mol/L时,体系中蠕虫状胶束最长,网络结构最为紧密,体系的零剪切粘度达到最大值。表面活性剂浓度一定时,混合比的提高有助于蠕虫状胶束的定向生长,弛豫时间τR和储能模量高频区平台模量G0提高,R=3.6时两者皆达到极大值,此后由于蠕虫状胶束的分枝化及(或)胶束破裂导致τR及G0下降。在表面活性剂混合比一定(R=3.6)时,表面活性剂浓度的提高利于蠕虫状胶束的增长或者分枝化,增加了胶束网络结构缠绕(融合)点的密度,导致G0逐渐增大。Cole-Cole图证实本文研究的蠕虫状胶束体系是符合Maxwell模型的线性粘弹性流体。  相似文献   

3.
采用流变测试技术考察了两种阴离子表面活性剂油酸钠(NaOA)和芥酸钠(NaOEr)在四丁基溴化铵(TBAB)和KCl诱导下构筑蠕虫状胶束的行为.随着KCl浓度增加, NaOA水溶液粘度增加,而加入TBAB使NaOA-KCl样品的粘度持续降低.与之相反, TBAB浓度的增加却使NaOEr-KCl样品的粘度大幅度增强.此外, NaOEr分子比NaOA表现出更强的形成胶束的能力,构成粘弹性蠕虫状胶束所需表面活性剂浓度和盐浓度更少.本文采用TBAB和KCl两种盐协同诱导NaOEr,制备了具有强粘弹性的阴离子蠕虫状胶束,探讨了盐TBAB/KCl对长链阴离子表面活性剂构筑蠕虫状胶束的影响机理.  相似文献   

4.
由碳酸钠诱导形成的油酸钠蠕虫状胶束的流变学性质   总被引:3,自引:0,他引:3  
曹泉  于丽  孙立新  郑利强  李干佐 《化学学报》2007,65(17):1821-1825
当Na2CO3浓度逐渐增加时, 用流变学的方法研究了阴离子表面活性剂油酸钠(NaOA)在溶液中从胶束转变成蠕虫状胶束的过程. 首先测量体系剪切粘度(η)和剪切速率的关系得到零剪切粘度(η0). 然后由动态振荡实验得到复合粘度(*|)、动态模量(储能模量G'、损耗模量G"和结构松弛时间τs)等物理量. 应用Cox-Merz规则和Cole-Cole图, 证明NaOA (0.040~0.080 mol/L)/Na2CO3 (0.25~0.50 mol/L)体系形成蠕虫状胶束, 且蠕虫状胶束的动态粘弹性在NaOA (0.050~0.080 mol/L)/Na2CO3 (0.35~0.45 mol/L)范围是符合Maxwell模型的线性粘弹性流体.  相似文献   

5.
部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驱替液的增稠剂,表面活性剂在一定的条件下可以通过自组装形成蠕虫状胶束,具有与高分子相似的增稠的作用。本文在半径为1–10 μm的毛细管中,分别考察了HPAMs与蠕虫状胶束的微观驱替行为,研究结果表示毛细管内腔的尺寸限制了这些非牛顿流体的增稠作用。随着毛细管半径的减小,聚合物溶液的剪切变稀越剧烈,甚至从非牛顿流体转变为牛顿流体的流体行为。结合驱替研究和超滤、电镜的结果,证明了高分子的缠绕结构在毛细管中已被破坏。通过对比驱替数据,蠕虫状胶束在毛细管中能够更大程度地保留宏观的粘度,我们提出表面活性剂能够通过自组装修复被破坏的缠绕结构,比高分子聚合物在微观有限空间中有更好的增稠能力。  相似文献   

6.
部分水解聚丙烯酰胺(HPAMs)被大量地用作三次采油中驱替液的增稠剂,表面活性剂在一定的条件下可以通过自组装形成蠕虫状胶束,具有与高分子相似的增稠的作用。本文在半径为1–10μm的毛细管中,分别考察了HPAMs与蠕虫状胶束的微观驱替行为,研究结果表示毛细管内腔的尺寸限制了这些非牛顿流体的增稠作用。随着毛细管半径的减小,聚合物溶液的剪切变稀越剧烈,甚至从非牛顿流体转变为牛顿流体的流体行为。结合驱替研究和超滤、电镜的结果,证明了高分子的缠绕结构在毛细管中已被破坏。通过对比驱替数据,蠕虫状胶束在毛细管中能够更大程度地保留宏观的粘度,我们提出表面活性剂能够通过自组装修复被破坏的缠绕结构,比高分子聚合物在微观有限空间中有更好的增稠能力。  相似文献   

7.
用流变学方法研究了无机电解质KBr存在时,阴离子表面活性剂十二烷基聚氧乙烯(3)硫酸钠(SDES)水溶液中胶束的生长和结构。通过测量体系的稳态剪切粘度(η)和应力(σ)关系,得到零剪切粘度(η0)、复合粘度(|η^*|)、动态模量[储能模量(G')和损耗模量(G")、平台模量(G0)、结构松驰时间(τ)等流变学参数,并应用Cox-Merz规则和Cole-Cole图,发现在SDES/KBr体系中可以形成蠕虫状胶束网络结构,体系为假塑性流体,偏离Maxwell模型,具有非线性粘弹性,没有单一的结构松驰时间。  相似文献   

8.
用流变学方法研究了无机电解质KBr存在时,阴离子表面活性剂十二烷基聚氧乙烯(3)硫酸钠(SDES)水溶液中胶束的生长和结构。通过测量体系的稳态剪切粘度(η)和应力(σ)关系,得到零剪切粘度(η0)、复合粘度(|η^*|)、动态模量[储能模量(G')和损耗模量(G")、平台模量(G0)、结构松驰时间(τ)等流变学参数,并应用Cox-Merz规则和Cole-Cole图,发现在SDES/KBr体系中可以形成蠕虫状胶束网络结构,体系为假塑性流体,偏离Maxwell模型,具有非线性粘弹性,没有单一的结构松驰时间。  相似文献   

9.
用稳态和震荡剪切实验研究了水杨酸钠(NaSal)对50 mmol·L-1阳离子Gemini表面活性剂2-羟基-(三亚甲基-α,ω-双十二烷基三甲基溴化铵和三亚甲基-α,ω-双十二烷基三甲基溴化铵, 简写为12-3(OH)-12和12-3-12)水溶液中形成蠕虫状胶束及其性质的影响. 在无盐状态下, 50 mmol·L-1的12-3(OH)-12或12-3-12在水溶液中仅形成球状或棒状胶束. NaSal可促进上述两体系胶束的生长, 生成蠕虫状胶束. 比较而言, 12- 3(OH)-12对NaSal更敏感, 可以在低盐浓度下生成蠕虫状胶束. 而且与12-3-12体系相比, 12-3(OH)-12生成了更长的蠕虫状胶束. 这些差别在于12-3(OH)-12体系中存在羟基连接链之间的氢键作用, 这增加了12- 3(OH)-12头基的亲水性, 促进了反离子的解离, 增大的胶束表面电荷密度更强烈地结合水杨酸根反离子, 减小了头基间的静电斥力, 反过来又增强了分子间氢键, 致使 12-3(OH)-12胶束迅速生长.  相似文献   

10.
用稳态和动态流变学方法研究了3-十六烷氧基-2-羟丙基三甲基溴化铵(R16HTAB)单纯以及水杨酸钠(NaSal)存在下溶液的流变特性.无盐体系中,在测定的浓度范围内,表面活性剂与零剪切黏度呈指数关系(η0∝c^2.53).水杨酸钠的加入促进了体系由球状向蠕虫状胶束转化.Cox—Merz规则和Cole-Cole图证明,混合体系生成了蠕虫状胶束.与传统的CTAB比较,无论水杨酸钠存在与否,R16HTAB水溶液的流变性能均较好,这主要归因于羟丙基基团的插入,使得R16HTAB和NaSal分子之间形成氢键连接,生成了更加稳定的三维网络结构.应用冷冻蚀刻电子显微镜技术进一步证实了体系中蠕虫状胶柬的存在.  相似文献   

11.
Viscoelastic wormlike micelles are important microstructures that relate to rhelogical properties of fluid in different applications. Recently, studies of structure and dynamic properties of wormlike micelle have extended to different surfactant type such as anionic, zwitterionic and polymeric surfactants. Applications have been found in oil fields, drag-reducing agents for district heating and cooling and thickeners for personal and home care products.  相似文献   

12.
A combination of viscoelastic surfactants with nanoparticles gives a new class of functional self-assembled materials promising for a large variety of applications. Nanoparticles improve the rheological properties of these systems because of the incorporation into the network of entangled wormlike micelles by linking to micellar end-caps, thus leading to elongation or cross-linking of the micelles. The present article reviews recent studies of these hybrid systems. Mechanisms of the interaction of nanoparticles with wormlike surfactant micelles as well as factors favoring the enhancement of rheological properties of viscoelastic surfactants by added nanoparticles are discussed, providing ways for proper design of such systems in the future. It is shown that viscoelastic surfactants modified with nanoparticles display very attractive features for practical applications, in particular, for fracturing fluids in oil recovery.  相似文献   

13.
We first prepared two types of CO2-responsive wormlike micelles based on N-butyldiethanolamine–sodium oleate (BDEA–NaOA) and N,N-diethyl butylamine–sodium oleate (DEBA–NaOA), respectively. And then, we compared the two different systems to investigate the effect of hydrogen bond on the properties of wormlike systems. The results of the pH and conductivity variation show that tertiary amine groups on BDEA and DEBA were ionized to quaternary ammonium salts after bubbling of CO2 into the systems, which work with OA? to form wormlike micelles based on electrostatic interaction. The results of rheological measurements exhibit that the viscosity and viscoelastic of the BDEA–NaOA were obviously superior to DEBA–NaOA. The dramatically difference of the two kind of wormlike micelles was due to the strong intermolecular hydrogen bond between the BDEA and NaOA. This indicates that the hydrogen bond could show great effect on the properties of the wormlike micelles. Finally, a reasonable mechanism was proposed based on the molecular structure, micelles assembly, and the intermolecular interactions.  相似文献   

14.
赵剑曦  谢丹华 《化学进展》2012,24(4):456-462
本文从分析蠕虫胶束形成的分子几何条件和自由能驱动因素入手,总结了传统阴离子表面活性剂蠕虫胶束的形成和性质,指出制约其构筑和产生优良黏弹性的原因。在此基础上,介绍了Gemini表面活性剂构筑蠕虫胶束的分子结构优势,以及由此构筑阴离子蠕虫胶束的研究进展,尤其是长刚性联接链Gemini表面活性剂形成的蠕虫胶束。最后特别指出,基于新颖分子结构优势,Gemini表面活性剂可望成为蠕虫胶束构筑的主要分子对象。  相似文献   

15.
Hydrazine nitrate (HN), an inorganic salt, was first found to have dual effects on inducing obvious viscoelasticity of both cationic and anionic surfactant solutions. It was interesting that the surfactant solutions exhibited characteristic wormlike micelle features with strong viscoelastic properties upon the addition of this inorganic salt. The rheological properties of the surfactant solutions have been measured and discussed. The apparent viscosity of the solutions showed a volcano change with an increase of the HN concentration. Correspondingly, the microstructures of the micelles in the solutions changed with the apparent viscosity. First, wormlike micelles began to form and grew with an increase of the HN concentration. Subsequently, the systems exhibited linear viscoelasticity with characteristics of a Maxwell fluid in the intermediate mass fraction range, which originated from a 3D entangled network of wormlike micelles. Finally, a transition from linear micelles to branched ones probably took place at higher HN contents. In addition, the origin of the dual effects brought by HN addition on inducing viscoelasticity in both cationic and anionic surfactant solutions was investigated.  相似文献   

16.
Yimin Hu  Jie Han  Rong Guo 《物理化学学报》2020,36(10):1909049-0
Wormlike micelles and low-molecular-weight hydrogels are composed of three-dimensional networks that endow them with viscoelasticity, but their viscoelastic properties are markedly different. The viscosity of wormlike micelles is attributed to a transient network, while that of gels is due to a stable network. Under certain conditions, wormlike micelles can undergo transition to gels with an increase in the density of the network. In our previous study, we found that the wormlike micelle formed by the ionic liquid-type surfactant 1-hexadecyl-3-octyl imidazolium bromide ([C16imC8]Br) without any additive has high viscoelasticity. The inclusion of a nonionic surfactant polyoxyethylene lauryl ether (Brij 30) is expected to enhance the viscoelasticity of [C16imC8]Br wormlike micelles via electrostatic shielding and strong hydrophobic interactions, which may be the driving factor for the wormlike micelle-to-gel structural transition. The morphology and viscoelasticity of [C16imC8]Br wormlike micelles with Brij 30 were studied as a function of concentration by rheological measurements and freeze-fracture transmission electron microscopy. The thermal stability and gel-sol transition temperature of the Brij 30/[C16imC8]Br gels were studied using rheology. The interaction between Brij 30 and [C16imC8]Br was studied by zeta potential measurements and nuclear magnetic resonance (NMR) spectroscopy. Upon the inclusion of Brij 30 into the [C16imC8]Br wormlike micelles, the viscoelasticity of the Brij 30/[C16imC8]Br samples first increased and then decreased with an increase in the Brij 30 concentration, at different initial concentrations of [C16imC8]Br. At a certain Brij 30 concentration, the Brij 30/[C16imC8]Br samples rheologically behaved as a gel. The maximum viscoelasticity of the [C16imC8]Br (4.06% (w))/Brij 30 gel was observed at a Brij 30/[C16imC8]Br molar ratio of 4.55. The viscoelasticity of the Brij 30/[C16imC8]Br gels was positively correlated with the activation energy of the gels. The gel-sol transition temperature of the Brij 30/[C16imC8]Br gels also increased first and then decreased with an increase in the Brij 30 concentration. The highest gel-sol transition temperature of the Brij 30/[C16imC8]Br (4.06% (w)) gel was observed at a Brij 30/[C16imC8]Br molar ratio of 2.93. The Brij 30 concentration had a notable impact on the viscoelasticity, thermal stability, and gel-sol transition temperature of the Brij 30/[C16imC8]Br gels. The zeta potential and 1H NMR measurements revealed that the neutral Brij 30 molecules are inserted into the palisade layer of the [C16imC8]Br wormlike micelles via hydrophobic interactions. This decreased the electrostatic repulsion between the [C16imC8]Br headgroups, which in turn induced the rapid growth of wormlike micelles and the formation of a stiffer network structure. Finally, the wormlike micelles underwent a structural transition to gels. The obtained results would aid in better understanding the relationship between wormlike micelles and gels, and may be of potential value for industrial and technological applications.  相似文献   

17.
The formation of wormlike micelles in mixed systems of a supramolecular coordination polymer Zn-L2EO4 and a diblock copolymer P2MVP41-b-PEO205 is investigated by light scattering and Cryo-TEM. By direct mixing at a stoichiometric charge ratio, the above mixtures proved to be capable of formation of spherical micelles with a radius of about 25 nm (Yan et al. Angew. Chem., Int. Ed.; 2007, 46, 1807-1809). Lately, we find wormlike micelles with a hydrodynamic radius >150 nm in a mixture with excess positive charge, that is, a negative charge fraction f- < 0.5. The transformation between wormlike and spherical micelles can be realized by variation of the mixing ratio through different protocols. Upon addition of negatively charged Zn-L2EO4 to a mixture with excess positively charged P2MVP41-b-PEO205, most of the wormlike micelles are transformed into spherical ones; upon addition of positively charged P2MVP41-b-PEO205 to a mixture of pure spherical micelles, wormlike micelles can be produced again. The effect of sample preparation protocol, sample history, and concentration on this transformation process is systematically reported in this article. A possible mechanism for the formation of wormlike micelles is proposed.  相似文献   

18.
The widespread use of wormlike micellar solutions is commonly found in household items such as cosmetic products, industrial fluids used in enhanced oil recovery and as drag reducing agents, and in biological applications such as drug delivery and biosensors. Despite their extensive use, there are still many details about the microscopic micellar structure and the mechanisms by which wormlike micelles form under flow that are not clearly understood. Microfluidic devices provide a versatile platform to study wormlike micellar solutions under various flow conditions and confined geometries. A review of recent investigations using microfluidics to study the flow of wormlike micelles is presented here with an emphasis on three different flow types: shear, elongation, and complex flow fields. In particular, we focus on the use of shear flows to study shear banding, elastic instabilities of wormlike micellar solutions in extensional flow (including stagnation and contraction flow field), and the use of contraction geometries to measure the elongational viscosity of wormlike micellar solutions. Finally, we showcase the use of complex flow fields in microfluidics to generate a stable and nanoporous flow-induced structured phase (FISP) from wormlike micellar solutions. This review shows that the influence of spatial confinement and moderate hydrodynamic forces present in the microfluidic device can give rise to a host of possibilities of microstructural rearrangements and interesting flow phenomena.  相似文献   

19.
The influence of ionic environment on the rheological properties of aqueous cetyltrimethylammonium p-toluene sulfonate (CTAT) solutions has been studied under three different flow fields: simple shear, opposed-jets flow and porous media flow. Emphasis was placed in the experiments on a range of CTAT concentration in which wormlike micelles were formed. It is known that these solutions exhibit shear thickening in the semi-dilute regime, which has been explained in terms of the formation of shear-induced, cooperative structures involving wormlike micelles. In simple shear flow, the zero shear viscosity exhibits first an increase with salt addition followed by a decrease, while the critical shear rate for shear thickening increases sharply at low salt contents and tends to saturate at relatively high ionic strengths. The results are explained in terms of a competition between micellar growth induced by salt addition and changes in micellar flexibility caused by ionic screening effects. Dynamic light scattering results indicate that micelles grow rapidly upon salt addition but eventually achieve a constant size under static conditions. These observations suggest that the wormlike micelles continuously grow with salt addition, but, as they become more flexible due to electrostatic screening, the wormlike coils tend to adopt a more compact conformation. The trends observed in the apparent viscosities measured in porous media flows seem to confirm these hypotheses-but viscosity increases in the shear thickening region-and are magnified by micelle deformation induced by the elongational nature of the local flow in the pores. In opposed-jets flow, the solutions have a behavior that is close to Newtonian, which suggests that the range of strain rates employed makes the flow strong enough to destroy or prevent the formation of cooperative micellar structures.  相似文献   

20.
In this work, metal ion-induced viscoelastic wormlike micelles in anionic/zwitterionic surfactant solutions (sodium dodecylsulfate/tetradecyldimethylammoniumpropanesulfonate, SDS/TPS) are reported. Steady and dynamic rheology and cryogenic transmission electron microscopy (cryo-TEM) are employed to characterize wormlike micelles in the SDS/TPS/Ca(NO(3))(2) system. Moreover, the surfactant mixing ratio and surfactant tail length are varied to reveal the factors that influence wormlike micelle growth and solution viscoelasticity. A series of metal ions such as Na(+), Mg(2+), Zn(2+), and Al(3+) are proven to promote viscoelastic wormlike micelle formation in the SDS/TPS system. The metal-containing wormlike micelles are expected to be good candidates for directing the synthesis of inorganic nanomaterials. In this article, dendritic silver nanostructures have been prepared in the surfactant wormlike micelle by in situ UV irradiation for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号