首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical model was established for the anti-plane dynamic fracture problem for two collinear cracks on the two sides of and perpendicular to a weak-discontinuous interface between two materials with smoothly graded elastic properties, as opposed to a sharp interface with discontinuously changing elastic properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. The integral equations were solved by Erdogan's collocation method and the dynamic stress intensity factors in the time domain were obtained through Laplace numerical inversion proposed by Miller and Guy. The influences of geometrical and physical parameters on the dynamic stress intensity factors were illustrated and discussed, based on which some conclusions were drawn: (a) to increase the thickness of the FGM strip on either side of the interface will be beneficial to reducing the DSIF of a crack perpendicular to a bi-FGM interface and embedded at the center of one of the FGM strips; (b) To increase the rigidity of the FGM strip where the crack is located will increase the DSIF. However, when the material in one side of the interface is more rigid, the DSIF of the interface-perpendicular embedded crack in the other side will be reduced; (c) To decrease the weak-discontinuity of a bi-FGM interface will not necessarily reduce the stress intensity factor of a crack perpendicular to it, which is different from the case of interfacial crack; (d) For two collinear cracks with equal half-length, when the distance between the two inner tips is less than about three times of the half-length, the interaction of them is intensified, however, when the distance is greater than this the interaction becomes weak.  相似文献   

2.
In fracture analysis of piezoelectric devices, the structural dimension is often assumed to be infinite at least in one direction. However, all practical piezoelectric structures are finite and their dimensions in different directions are often comparable and cannot be simplified as infinite. The assumption of infinite dimension may lead to inexact theoretical results. The present work aims at studying the interfacial fracture behavior of a functionally graded piezoelectric layer on a dielectric substrate with finite dimension. The crack problem is solved by the methods of Fourier series and Cauchy singular integral equation. Parametric studies on the stress intensity factor (SIF) reveal the following: (a) when a crack tip is near to an interface end, its SIF is mainly governed by the end effect; (b) when a crack is far from the interface ends and the piezoelectric layer is thin, its SIF is principally affected by the thickness of the piezoelectric layer, and (c) only when a crack is far from the interface ends and meanwhile the piezoelectric layer is thick will its SIF be dominated by the non-homogeneity parameter, and in this case, the SIF increases with the increasing non-homogeneity parameter.  相似文献   

3.
A mechanical model was established for the antiplane dynamic fracture problem of a functionally graded coating–substrate structure with a coating crack perpendicular to the weak-discontinuous interface. The problem was reduced to a Cauchy singular integral equation by the methods of Laplace and Fourier integral transforms. Erdogan’s collocation method and the Laplace numerical inversion proposed by Miller and Guy were used to calculate the dynamic stress intensity factors. Three conclusions were drawn through parametric studies: (a) unlike the conclusion drawn for an interfacial crack, reducing the weak discontinuity of the interface will not necessarily decrease the dynamic stress intensity factor (DSIF) of the coating crack perpendicular to the interface; (b) increasing the stiffness of the substrate when that of the coating is fixed, or decreasing the stiffness of coating when that of the substrate is fixed, will be beneficial for the reduction of the DSIF of a coating crack perpendicular to the interface; and (c) the free surface has a greater influence on the DSIF than the interface does, and the effect of the interface on the DSIF is greater than that of the material stiffness in the crack-tip region.  相似文献   

4.
The mechanical model was established for the anti-plane fracture problem of a functionally graded coating–substrate system with a coating crack inclined to the weak/micro-discontinuous interface. The Cauchy singular integral equation for the crack was derived using Fourier integral transform, and the Lobatto–Chebyshev collocation method put up by Erdogan and Gupta was used to get its numerical solution. Finally, the effects of the weak/micro-discontinuity of the interface on SIFs were analyzed, the “affected regions” corresponding to the two crack tips have been obtained and their engineering significance was discussed. It was indicated that, for the crack tip in the corresponding “affected region”, to reduce the weak-discontinuity of the interface and to make the interface micro-discontinuous are the two effective ways to reduce the SIF, and the latter way always has more remarkable SIF-reduction effect. For the crack tip outside the “affected region”, its SIF is mainly influenced by material stiffness, and to prevent such a tip from growing toward the interface “softer coating and stiffer substrate” is a more advantageous combination than “stiffer coating and softer substrate”.  相似文献   

5.
The special case of a crack under mode III conditions was treated, lying parallel to the edges of an infinite strip with finite width and with the shear modulus varying exponentially perpendicular to the edges. By using Fourier transforms the problem was formulated in terms of a singular integral equation. It was numerically solved by representing the unknown dislocation density by a truncated series of Chebyshev polynomials leading to a linear system of equations. The stress intensity factor (SIF) results were discussed with respect to the influences of different geometric parameters and the strength of the non-homogeneity. It was indicated that the SIF increases with the increase of the crack length and decreases with the increase of the rigidity of the material in the vicinity of crack. The SIF of narrow strip is very sensitive to the change of the non-homogeneity parameter and its variation is complicated. With the increase of the non-homogeneity parameter, the stress intensity factor may increase, decrease or keep constant, which is mainly determined by the strip width and the relative crack location. If the crack is located at the midline of the strip or if the strip is wide, the stress intensity factor is not sensitive to the material non-homogeneity parameter.  相似文献   

6.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied.  相似文献   

7.
In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are exponential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular integral equations, which are solved numerically. The stress intensity factors are computed for various crack orientations, crack locations and material parameters. The results show that crack length, crack orientation and the non-homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.  相似文献   

8.
功能梯度夹层多个环形界面裂纹扭转冲击   总被引:1,自引:1,他引:0  
冯文杰  Su RKL 《力学学报》2005,37(1):120-124
研究位于功能梯度层和外部均匀材料之间多个环形界面裂纹的扭转冲击问题,功能梯度材料 (FGM)粘结在两种不同的弹性材料之间,功能梯度层和外部材料之间环形界面裂纹的数目是任意的.引进积分变换和位错密度函数将问题化为求解Laplace域里标准的Cauchy奇异积分方程,进而化为求解代数方程;应用Laplace数值反演技术,计算时域里的动应力强度因子(DSIF).考查了结构几何尺度和材料特性对裂尖动态断裂特性的影响.数值结果表明,DSIF存在一个主峰,到达主峰后,在其相应的静态值附近波动并最终趋于稳定;增加FGM的梯度能减小DSIF的峰值.  相似文献   

9.
Mixed-mode fracture mechanics analysis of an embedded arbitrarily oriented crack in a two-dimensional functionally graded material using plane elasticity theory is considered. The material properties are assumed to vary exponentially in two planar directions. Then, employing Fourier integral transforms with singular integral equation technique, the problem is solved. The stress intensity factors (SIFs) at the crack tips are calculated under in-plane mechanical loads. Finally, the effects of crack orientation, material non-homogeneity, and other parameters are discussed on the value of SIF in mode I and mode II fracture.  相似文献   

10.
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored. This work was supported by the National Natural Science Foundation of China (No.19772064) and by the project of CAS KJ 951-1-20  相似文献   

11.
The main purpose of the present work is to study the influences of magnetostriction, electrostriction and piezomagnetic/piezoelectric stiffening on the fracture behavior of a layered multiferroic composite. For comparison, it is assumed that there is a crack, parallel to the interface, in each layer. Methods of cosine transform and Cauchy singular integral equations are used to solve the crack problem. Numerical results of the stress intensity factor (SIF) are provided and the computational accuracy is demonstrated. Discussion on the numerical results indicates that the multiferroic composite consisting of cobalt ferrite and barium titanate layers are more prone to fracture under electric loading than under magnetic loading. In the case of magnetostriction, to increase the shear modulus of the piezomagnetic layer would raise the SIF; but to increase that of the piezoelectric layer would reduce the SIF; in the case of electrostriction, inverse results are obtained. Piezomagnetic stiffening can affect the SIF when the composite is under electrostriction; piezoelectric stiffening can influence the SIF if the composite is under magnetostriction. In addition, it is also revealed that two parallel equal cracks may shield each other even if an interface exists between them.  相似文献   

12.
To simulate buckling of nonuniform coatings, we consider the problem of an embedded crack in a graded orthotropic coating bonded to a homogeneous substrate subjected to a compressive loading. The coating is graded in the thickness direction and the material gradient is orthogonal to the crack direction which is parallel with the free surface. The elastic properties of the material are assumed to vary continuously along the thickness direction. The principal directions of orthotropy are parallel and perpendicular to the crack orientation. The loading consists of a uniform compressive strain applied away from the crack region. The graded coating is modeled as a nonhomogeneous medium with an orthotropic stress–strain law. Using a nonlinear continuum theory and a suitable perturbation technique, the plane strain problem is reduced to an eigenvalue problem describing the onset of buckling. Using integral transforms, the resulting plane elasticity equations are converted analytically into singular integral equations which are solved numerically to yield the critical buckling strain. The Finite Element Method was additionally used to model the crack problem. The main objective of the paper is to study the influence of material nonhomogeneity on the buckling resistance of the graded layer for various crack positions, coating thicknesses and different orthotropic FGMs.  相似文献   

13.
In this paper, a two dimensional functionally graded material (2D-FGM) under an anti-plane load with an internal crack is considered. The crack is oriented in an arbitrary direction. The material properties are assumed to vary exponentially in two planar directions. The problem is analyzed and solved by two different methods namely Fourier integral transforms with singular integral equation technique, and then by the finite element method. The effects of crack orientation, material non-homogeneity, and other parameters on the value of stress intensity factor (SIF) are studied. Finally, the obtained results for Mode III stress intensity factor of different methods are compared.  相似文献   

14.
In this paper the plane elasticity problem of two bonded dissimilar functionally graded strips containing an interface crack is studied.The governing equation in terms of Airy stress function is formulated and exact solutions are obtained for several special variations of material properties in Fourier transformation domain.The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically.Numerical results show that fracture toughness of materials can be greatly improved by graded variation of elastic modulus and the influence of the specific form of elastic modulus on the fracture behavior of FGM is limited.  相似文献   

15.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs.  相似文献   

16.
This paper shows the anti-plane crack problem of two bonded functionally graded material (FGM) strips. Each strip contains an arbitrarily oriented crack. The material properties of the strips are assumed in exponential forms varied in the direction normal to the interface. After employing the Fourier transforms, the unknowns are solved from the interface conditions, boundary conditions and the condition on the crack surfaces. The problem can then be reduced to a system of singular integral equations, which are solved numerically by applying the Gauss-Chebyshev integration formula to obtain the stress intensity factors at the crack tips. In the discussions, several degenerated problems are considered to demonstrate the influence of the non-homogeneous parameters, crack orientations, edge effects and the crack interactions on the normalized intensity factors. In general, the factors are larger when crack tips are located in stronger material. Also, the factors increase as the crack is oriented in the direction normal to the interface. The conclusions made in this research can be used to evaluate the safety of two bonded strips once the cracks exist inside the structure.  相似文献   

17.
研究两半无限大黏弹性体间Griffith界面裂纹在简谐载荷作用下裂纹尖端动应力场的奇异特性.通过引入裂纹张开位移和裂纹位错密度函数,相应的混合边值问题归结为一组耦合的奇异积分方程.渐近分析表明裂尖动应力场的奇异特征完全包含在奇异积分方程的基本解中.通过对基本解的深入分析发现黏弹性材料界面裂纹裂尖动应力场具有与材料参数和外载荷频率相关的振荡奇异特性.以标准线性固体黏弹材料为例讨论了材料参数和载荷频率对奇性指数和振荡指数的影响.  相似文献   

18.
The interaction of a general plane P wave and an elastic cylindrical inclusion of infinite length partially debonded from its surrounding viscoelastic matrix of infinite extension is investigated. The debonded region is modeled as an arc-shaped interface crack between inclusion and matrix with non-contacting faces. With wave functions expansion and singular integral equation technique, the interaction problem is reduced to a set of simultaneous singular integral equations of crack dislocation density function. By analysis of the fundamental solution of the singular integral equation, it is found that dynamic stress field at the crack tip is oscillatory singular, which is related to the frequency of incident wave. The singular integral equations are solved numerically, and the crack open displacement and dynamic stress intensity factor are evaluated for various incident angles and frequencies. The project supported by the National Natural Science Foundation of China (19872002) and Climbing Foundation of Northern Jiaotong University  相似文献   

19.
The two-dimensional thermoelastic sliding frictional contact of functionally graded material (FGM) coated half-plane under the plane strain deformation is investigated in this paper. A rigid punch is sliding over the surface of the FGM coating with a constant velocity. Frictional heating, with its value proportional to contact pressure, friction coefficient and sliding velocity, is generated at the interface between the punch and the FGM coating. The material properties of the coating vary exponentially along the thickness direction. In order to solve the heat conduction equation analytically, the homogeneous multi-layered model is adopted for treating the graded thermal diffusivity coefficient with other thermomechanical properties being kept as the given exponential forms. The transfer matrix method and Fourier integral transform technique are employed to convert the problem into a Cauchy singular integral equation which is then solved numerically to obtain the unknown contact pressure and the in-plane component of the surface stresses. The effects of the gradient index, Peclet number and friction coefficient on the thermoelastic contact characteristics are discussed in detail. Numerical results show that the distribution of the contact stress can be altered and therefore the thermoelastic contact damage can be modified by adjusting the gradient index, Peclet number and friction coefficient.  相似文献   

20.
The concepts and classification are brought forth for the strong-discontinuous interface, the weak-discontinuous interface, the micro-discontinuous interface and the all-continuous interface. The mechanical model is established for the dynamic fracture problem of the weak-discontinuous interface between a FGM coating and a FGM substrate. The Cauchy singular integral equation for the crack is derived by integral transform, and the allocation method is used to get the numerical solution. Analysis of the numerical solution indicates that the weak discontinuity is an important factor affecting the SIFs of the interfacial crack. To reduce the weak discontinuity is beneficial to the decrease of the SIFs. Contrast between the solution of the weak-discontinuous interface and that of the micro-discontinuous one shows that the micro-discontinuity is a kind of connection relation of mechanical property better than the weak discontinuity for the coating–substrate structure. To make the interface be micro-discontinuous is helpful to enhance the capacity of the functionally gradient coating–substrate interface to resist dynamic fracture. The first rank micro-discontinuity is enough to reduce the SIFs notably, however, the higher-rank micro-discontinuous terms, which is equal to or higher than the second rank, have less effect on the SIFs. In addition, the thickness of the coating and the substrate and the applied peel stress are also important factors affecting the dynamic SIFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号