首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied.  相似文献   

2.
The fracture problem of a crack in a functionally graded strip with its properties varying in a linear form along the strip thickness under an anti-plane load is considered. The embedded anti-plane crack is located in the middle of strip half way through the thickness. The third mode stress intensity factor is derived using two different methods. In the first method, by employing Fourier integral transforms, the governing equation is converted to a singular integral equation, which is subsequently solved numerically by the collocation method based on Chebyshev polynomials. Then, the problem is solved by means of finite element method in which quadrilateral 8-node singular elements around each crack tip are used. After inspecting the validity of the solution technique, effects of crack geometry and non-homogeneous material parameter on the stress intensity, energy release and energy density are studied and the results of analytical and FEM solutions are compared.  相似文献   

3.
弯曲载荷作用下,双槽圆形截面管的角裂纹具有两个不同的奇异应力场和相应的应力强度因子,针对该异型薄壁管裂纹问题,提出了一种简单实用的应力强度因子求解方法。即利用守恒律,通过选取适当的三维积分路径,并结合初等力学的应力位移计算方法,显化了应力强度因子对J_2积分的贡献,建立了一个求解应力强度因子的方程。由于该方程不足以求解两个应力强度因子,利用材料力学平截面保持平面的变形假设,建立了应力强度因子之间的补充方程。将J_2积分与补充方程联立求解,既可得到弯曲载荷作用下双槽圆形截面管角裂纹的应力强度因子。对于其他异型薄壁管裂纹问题,该方法同样适用,计算过程简单。  相似文献   

4.
黏弹性体界面裂纹的冲击响应   总被引:3,自引:0,他引:3  
研究两半无限大黏弹性体界面Griffith裂纹在反平面剪切突出载荷下,裂纹尖端动应力强度因子的时间响应,首先,运用积分变换方法将黏弹性混合黑社会问题化成变换域上的对偶积分方程,通过引入裂纹位错密度函数进一步化成Cauchy型奇异积分方程,运用分片连续函数法数值求解奇异积分方程,得到变换域内的动应力强度因子,再用Laplace积分变换数值反演方法,将变换域的解反演到时间域内,最终求得动应力强度因子的时间响应,并对黏弹性参数的影响进行分析。  相似文献   

5.
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored. This work was supported by the National Natural Science Foundation of China (No.19772064) and by the project of CAS KJ 951-1-20  相似文献   

6.
IntroductionInrecentyears,greatattentionshavebeenpaidtotheresearchofFunctionallyGradedMaterials(FGM).Fromtheviewpointsofappliedmechanics,FGMarenon_homogeneoussolids.Thenon_homogeneityofFGMhasagreatinfluenceontheirmechanicalbehavior,especiallywhenthecomp…  相似文献   

7.
功能梯度材料裂纹尖端动态应力场   总被引:10,自引:2,他引:8  
研究受反平面剪切作用的功能梯度材料动态裂纹问题,通过积分变换-对偶积分方程方法推出了裂纹尖端动态应力场,时间域内的动态应力强度因子由Laplace数值反演获得,研究结果表明功能梯度材料的梯度越大,相应的裂纹问题的动态应力强度因子值越低。  相似文献   

8.
正交各向异性功能梯度材料反平面裂纹尖端应力场   总被引:8,自引:2,他引:6  
采用积分变换-对偶积分方程方法,研究了正交各向异性功能梯度材料反平面裂纹问题,文中假定材料沿两个主轴方向的剪切模量成比例按双参数梯度模型变化,通过求解对偶积分程并考虑变形Bessel函数的渐特性,推导出了裂纹尖端应力场,最后考察了材料非均匀性及正交性对应力强度因子的影响。  相似文献   

9.
In this paper, the dynamic behavior of two collinear symmetric interface cracks between two dissimilar magneto-electro-elastic material half planes under the harmonic anti-plane shear waves loading is investigated by Schmidt method. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. To solve the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor, the electric displacement intensity factor and the magnetic flux intensity factor are given. The relations among the electric filed, the magnetic flux field and the stress field are obtained.  相似文献   

10.
Considered is a Yoffe crack in an infinite strip of functionally grated material (FGM) subjected to antiplane shear. The shear moduli in two directions of FGM are assumed to be of exponential form. The dynamic stress intensity factor and strain energy density factor at the crack tip are obtained by using integral transforms and dual-integral equations. The numerical results show that the decrease of the strain energy density factor varies with the shear moduli gradient, and the increase of the strain energy density factor varies with the increase of the moving crack speed. The ratio of shear moduli in material vertical orientation has a great influence on the strain energy density factor.  相似文献   

11.
Summary  The dynamic response of an interface crack between two dissimilar piezoelectric layers subjected to mechanical and electrical impacts is investigated under the boundary condition of electrical insulation on the crack surface by using the integral transform and the Cauchy singular integral equation methods. The dynamic stress intensity factors, the dynamic electrical displacement intensity factor, and the dynamic energy release rate (DERR) are determined. The numerical calculation of the mode-I plane problem indicates that the DERR is more liable to be the token of the crack growth when an electrical load is applied. The dynamic response shows a significant dependence on the loading mode, the material combination parameters as well as the crack configuration. Under a given loading mode and a specified crack configuration, the DERR of an interface crack between piezoelectric media may be decreased or increased by adjusting the material combination parameters. It is also found that the intrinsic mechanical-electrical coupling plays a more significant role in the dynamic fracture response of in-plane problems than that in anti-plane problems. Received 4 September 2001; accepted for publication 23 July 2002 The work was supported by the National Natural Science Foundation under Grant Number 19891180, the Fundamental Research Foundation of Tsinghua University, and the Education Ministry of China.  相似文献   

12.
In this paper, the behavior of an interface crack for a functionally graded strip sandwiched between two homogeneous layers of finite thickness subjected to an uniform tension is resolved using a somewhat different approach, named the Schmidt method. The Fourier transform technique is applied and a mixed boundary value problem is reduced to two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surface. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. This process is quite different from those adopted in previous works. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the cracks. It can be obtained that the results of the present paper are the same as ones of the same problem that was solved by the singular integral equation method. As a special case, when the material properties are not continuous through the crack line, an approximate solution of the interface crack problem is also given under the assumption that the effect of the crack surface interference very near the crack tips is negligible. Contrary to the previous solution of the interface crack, it is found that the stress singularities of the present interface crack solution are the same as ones of the ordinary crack in homogenous materials.  相似文献   

13.
Using the integral transform and the Cauchy singular integral equation methods, the problem of an interface crack between two dissimilar piezoelectric layers under mechanical impacts is investigated under the permeable electrical boundary condition on the crack surface. The dynamic stress intensity factors (DSIFs) of both mode-I and II are determined. The effects of the crack configuration and the combinations of the constitutive parameters of the piezoelectric materials on the dynamic response are examined. The numerical calculation of the mode-I plane problem indicates that the DSIFs may be retarded or accelerated by specifying different combinations of material parameters. In addition, the parameters of the crack configuration, including the ratio of the crack length to the layer width and the ratio between the widths of two layers, exert a considerable influence on the DSIFs. The results seem useful for design of the piezoelectric structures and devices of high performance.  相似文献   

14.
研究了薄膜涂层材料中币形界面裂纹的弹性波散射问题,建立了含有币形界面裂纹的覆层半空间模型,采用Hankel积分变换,将裂纹对弹性波散射的问题转化为求解矩阵形式的奇异积分方程。结合渐近分析和围道积分技术得到积分方程的解,进一步推导了散射波的应力场和位移场,以及动应力强度因子的理论计算公式。在数值算例中,分析了不同材料组合和裂纹尺寸情况下动应力强度因子与入射波频率的关系,并给出了裂纹张开位移的结果。为薄膜涂层材料的动态破坏分析提供了一定的理论基础。  相似文献   

15.
Dynamic stress intensity factor for a Griffith crack in functionally graded orthotropic materials under time-harmonic loading is investigated in the present paper. By using the Fourier transform and defining the jumps of displacement components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement components across the crack surface are expanded in a series of Jacobi polynomial. Numerical examples are provided to show the effects of material properties and the crack configuration on the dynamic stress intensity factors of the functionally graded orthotropic materials with a Griffith crack.  相似文献   

16.
The mechanical model was established for the anti-plane dynamic fracture problem for two collinear cracks on the two sides of and perpendicular to a weak-discontinuous interface between two materials with smoothly graded elastic properties, as opposed to a sharp interface with discontinuously changing elastic properties. The problem was reduced as a system of Cauchy singular integral equations of the first kind by Laplace and Fourier integral transforms. The integral equations were solved by Erdogan's collocation method and the dynamic stress intensity factors in the time domain were obtained through Laplace numerical inversion proposed by Miller and Guy. The influences of geometrical and physical parameters on the dynamic stress intensity factors were illustrated and discussed, based on which some conclusions were drawn: (a) to increase the thickness of the FGM strip on either side of the interface will be beneficial to reducing the DSIF of a crack perpendicular to a bi-FGM interface and embedded at the center of one of the FGM strips; (b) To increase the rigidity of the FGM strip where the crack is located will increase the DSIF. However, when the material in one side of the interface is more rigid, the DSIF of the interface-perpendicular embedded crack in the other side will be reduced; (c) To decrease the weak-discontinuity of a bi-FGM interface will not necessarily reduce the stress intensity factor of a crack perpendicular to it, which is different from the case of interfacial crack; (d) For two collinear cracks with equal half-length, when the distance between the two inner tips is less than about three times of the half-length, the interaction of them is intensified, however, when the distance is greater than this the interaction becomes weak.  相似文献   

17.
Anti-plane cracks in finite functionally graded piezoelectric solids under time-harmonic loading are studied via a non-hypersingular traction based boundary integral equation method (BIEM). The formulation allows for a quadratic variation of the material properties in two directions. The boundary integral equation (BIE) system is treated by using the frequency dependent fundamental solution based on Radon transforms. Its numerical solution provides the displacements and tractions on the external boundary as well as the crack opening displacements from which the mechanical stress intensity factor (SIF) and the electrical displacement intensity factor (EDIF) are determined. Several examples for single and multiple straight and curved cracks demonstrate the applicability of the method and show the influence of the different system parameters.  相似文献   

18.
The special case of a crack under mode III conditions was treated, lying parallel to the edges of an infinite strip with finite width and with the shear modulus varying exponentially perpendicular to the edges. By using Fourier transforms the problem was formulated in terms of a singular integral equation. It was numerically solved by representing the unknown dislocation density by a truncated series of Chebyshev polynomials leading to a linear system of equations. The stress intensity factor (SIF) results were discussed with respect to the influences of different geometric parameters and the strength of the non-homogeneity. It was indicated that the SIF increases with the increase of the crack length and decreases with the increase of the rigidity of the material in the vicinity of crack. The SIF of narrow strip is very sensitive to the change of the non-homogeneity parameter and its variation is complicated. With the increase of the non-homogeneity parameter, the stress intensity factor may increase, decrease or keep constant, which is mainly determined by the strip width and the relative crack location. If the crack is located at the midline of the strip or if the strip is wide, the stress intensity factor is not sensitive to the material non-homogeneity parameter.  相似文献   

19.
The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.  相似文献   

20.
Magneto-electro-elastic (MEE) materials usually consist of piezoelectric (PE) and piezomagnetic (PM) phases. Between different constituent phases, there exist lots of interfaces with discontinuous MEE properties. Complex interface distribution brings a great difficulty to the fracture analysis of MEE materials since the present fracture mechanics methods can hardly solve the fracture parameters efficiently of a crack surrounded by complex interfaces. This paper develops a new domain formulation of the interaction integral for the computation of the fracture parameters including stress intensity factors (SIFs), electric displacement intensity factor (EDIF) and magnetic induction intensity factor (MIIF) for linear MEE materials. The formulation derived here does not involve any derivatives of material properties and moreover, it can be proved that an arbitrary interface in the integral domain does not affect the validity and the value of the interaction integral. Namely, the interaction integral is domain-independent for material interfaces and thus, its application does not require material parameters to be continuous. Due to this advantage, the interaction integral becomes an effective approach for extracting the fracture parameters of MEE materials with complex interfaces. Combined with the extended finite element method (XFEM), the interaction integral is employed to solve several representative problems to verify its accuracy and domain-independence. Good results show the effectiveness of the present method in the fracture analysis of MEE materials with continuous and discontinuous properties. Finally, the particulate MEE composites composed of PE and PM phases are considered and four schemes of different property-homogenization level are proposed for comparing their effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号