首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the effort to increase the stable efficiency of thin film silicon micromorph solar cells, a silicon oxide based intermediate reflector (SOIR) layer is deposited in situ between the component cells of the tandem device. The effectiveness of the SOIR layer in increasing the photo‐carrier generation in the a‐Si:H top absorber is compared for p–i–n devices deposited on different rough, highly transparent, front ZnO layers. High haze and low doping level for the front ZnO strongly enhance the current density (Jsc) in the μc‐Si:H bottom cell whereas Jsc in the top cell is influenced by the angular distribution of the transmitted light and by the reflectivity of the SOIR related to different surface roughness. A total Jsc of 26.8 mA/cm2 and an initial conversion efficiency of 12.6% are achieved for 1.2 cm2 cells with top and bottom cell thicknesses of 300 nm and 3 μm, and without any anti‐reflective coating on the glass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Microcrystalline silicon thin film pin solar cells with a highly crystallized intrinsic μc‐Si:F:H absorber were prepared by RF‐plasma enhanced chemical vapour deposition using SiF4 as the gas precursor. The cells were produced with a vacuum break between the doped layer and intrinsic layer depositions, and the effect of different subsequent interface treatment processes was studied. The use of an intrinsic μc‐Si:H p/i buffer layer before the first air break increased the short circuit current density from 22.3 mA/cm2 to 24.7 mA/cm2. However, the use of a hydrogen‐plasma treatment after both air breaks without an interface buffer layer improved both the open circuit voltage and the fill factor. Although the material used for the absorber layer showed a very high crystalline fraction and thus an increased spectral response at long wavelengths, an open‐circuit voltage (VOC) of 0.523 V was nevertheless observed. Such a value of VOC is higher than is typically obtained in devices that employ a highly crystallized absorber as reported in the literature (see abstract figure). Using a hydrogen‐plasma treatment, a single junction μc‐Si:F:H pin solar cell with an efficiency of 8.3% was achieved.

  相似文献   


3.
This work demonstrates that the combination of a wet‐chemically grown SiO2 tunnel oxide with a highly‐doped microcrystalline silicon carbide layer grown by hot‐wire chemical vapor deposition yields an excellent surface passivation for phosphorous‐doped crystalline silicon (c‐Si) wafers. We find effective minority carrier lifetimes of well above 6 ms by introducing this stack. We investigated its c‐Si surface passivation mechanism in a systematic study combined with the comparison to a phosphorous‐doped polycrystalline‐Si (pc‐Si)/SiO2 stack. In both cases, field effect passivation by the n‐doping of either the µc‐SiC:H or the pc‐Si is effective. Hydrogen passivation during µc‐SiC:H growth plays an important role for the µc‐SiC:H/SiO2 combination, whereas phosphorous in‐diffusion into the SiO2 and the c‐Si is operative for the surface passivation via the Pc‐Si/SiO2 stack. The high transparency and conductivity of the µc‐SiC:H layer, a low thermal budget and number of processes needed to form the stack, and the excellent c‐Si surface passivation quality are advantageous features of µc‐SiC:H/SiO2 that can be beneficial for c‐Si solar cells. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

4.
An effective passivation on the front side boron emitter is essential to utilize the full potential of solar cells fabricated on n‐type silicon. However, recent investigations have shown that it is more difficult to achieve a low surface recombination velocity on highly doped p‐type silicon than on n‐type silicon. Thus, the approach presented in this paper is to overcompensate the surface of the deep boron emitter locally by a shallow phosphorus diffusion. This inversion from p‐type to n‐type surface allows the use of standard technologies which are used for passivation of highly doped n‐type surfaces. Emitter saturation current densities (J0e) of 49 fA/cm2 have been reached with this approach on SiO2 passivated lifetime samples. On solar cells a certified conversion efficiency of 21.7% with an open‐circuit voltage (Voc) of 676 mV was achieved. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We used amorphous silicon oxide (a‐Si1–xOx:H) and microcrystalline silicon oxide (µc‐Si1–xOx:H) as buffer layer and p‐type emitter layer, respectively, in n‐type silicon hetero‐junction (SHJ) solar cells. We proposed to insert a thin (2 nm) intrinsic amorphous silicon (a‐Si:H) thin film between the thin (2.5 nm) a‐Si1–xOx:H buffer layer and the p‐layer to form a stack buffer layer of a‐Si:H/a‐Si1–xOx:H. As a result, a high open‐circuit voltage (VOC) and a high fill factor (FF) were obtained at the same time. Finally, a high efficiency of 19.0% (JSC = 33.46 mA/cm2, VOC = 738 mV, FF = 77.0%) was achieved on a 100 μm thick polished wafer using the stack buffer layer.

  相似文献   


6.
We measure surface recombination velocities (SRVs) below 10 cm/s on p‐type crystalline silicon wafers passivated by atomic–layer–deposited (ALD) aluminium oxide (Al2O3) films of thickness ≥10 nm. For films thinner than 10 nm the SRV increases with decreasing Al2O3 thickness. For ultrathin Al2O3 layers of 3.6 nm we still attain a SRV < 22 cm/s on 1.5 Ω cm p‐Si and an exceptionally low SRV of 1.8 cm/s on high‐resistivity (200 Ω cm) p‐Si. Ultrathin Al2O3 films are particularly relevant for the implementation into solar cells, as the deposition rate of the ALD process is extremely low compared to the frequently used plasma‐enhanced chemical vapour deposition of silicon nitride (SiNx). Our experiments on silicon wafers passivated with stacks composed of ultrathin Al2O3 and SiNx show that a substantially improved thermal stability during high‐temperature firing at 830 °C is obtained for the Al2O3/SiNx stacks compared to the single‐layer Al2O3 passivation. Al2O3/SiNx stacks are hence ideally suited for the implementation into industrial‐type silicon solar cells where the metal contacts are made by screen‐printing and high‐temperature firing of metal pastes. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Aluminium‐doped p‐type (Al‐p+) silicon emitters fabricated by means of a simple screen‐printing process are effectively passivated by plasma‐enhanced chemical‐vapour deposited amorphous silicon (a‐Si). We measure an emitter saturation current density of only 246 fA/cm2, which is the lowest value achieved so far for a simple screen‐printed Al‐p+ emitter on silicon. In order to demonstrate the applicability of this easy‐to‐fabricate p+ emitter to high‐efficiency silicon solar cells, we implement our passivated p+ emitter into an n+np+ solar cell structure. An independently confirmed conversion efficiency of 19.7% is achieved using n‐type phosphorus‐doped Czochralski‐grown silicon as bulk material, clearly demonstrating the high‐efficiency potential of the newly developed a‐Si passivated Al‐p+ emitter. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this work, hydrogen plasma etching of surface oxides was successfully accomplished on thin (~100 µm) planar n‐type Czochralski silicon wafers prior to intrinsic hydrogenated amorphous silicon [a‐Si:H(i)] deposition for heterojunction solar cells, using an industrial inductively coupled plasma‐enhanced chemical vapour deposition (ICPECVD) platform. The plasma etching process is intended as a dry alternative to the conventional wet‐chemical hydrofluoric acid (HF) dip for solar cell processing. After symmetrical deposition of an a‐Si:H(i) passivation layer, high effective carrier lifetimes of up to 3.7 ms are obtained, which are equivalent to effective surface recombination velocities of 1.3 cm s–1 and an implied open‐circuit voltage (Voc) of 741 mV. The passivation quality is excellent and comparable to other high quality a‐Si:H(i) passivation. High‐resolution transmission electron microscopy shows evidence of plasma‐silicon interactions and a sub‐nanometre interfacial layer. Using electron energy‐loss spectroscopy, this layer is further investigated and confirmed to be hydrogenated suboxide layers. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

9.
In this letter we report the result of an a‐Si:H/nc‐Si:H tandem thin film silicon solar mini‐module fabricated on plastic foil containing intrinsic silicon layers made by hot‐wire CVD (efficiency 7.4%, monolithically series‐connected, aperture area 25 cm2). We used the Helianthos cell transfer process. The cells were first deposited on a temporary aluminum foil carrier, which allows the use of the optimal processing temperatures, and then transferred to a plastic foil. This letter reports the characteristics of the flexible solar cells obtained in this manner, and compares the results with those obtained on reference glass substrates. The research focus for implementation of the hot‐wire CVD technique for the roll‐to‐roll process is also discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This Letter discusses an important difference between positively charged SiO2 and negatively charged Al2O3 rear‐passivated p‐type Si solar cells: their illumination level dependency. For positively charged SiO2 rear‐passivated p‐type Si solar cells, a loss in short circuit current (JSC) and open circuit voltage (VOC) as a function of illumination level is mainly caused by parasitic shunting and a decrease in surface recombination, respectively. Hence, the relative loss in cell conversion efficiency, JSC, and VOC as a function of the illumination level for SiO2 compared to Al2O3 rear‐passivated p‐type Si solar cells has been measured and discussed. Subsequently, an exponential decay fit of the loss in cell efficiency is applied in order to estimate the difference in the energy output for both cell types in three different territories: Belgium (EU), Seattle and Austin (US). The observed trends in the difference in energy output between both cells, as a function of time of the year and region, are as expected and discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The preparation of high‐quality molybdenum oxide (MoOx) is demonstrated by plasma‐enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 °C. The films are amorphous, slightly substoichiometric with respect to MoO3, and free of other elements apart from hydrogen (&11 at%). The films have a high transparency in the visible region and their compatibility with a‐Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoOx in hole‐selective contacts for silicon heterojunction solar cells. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

13.
The low thermal stability of hydrogenated amorphous silicon (a‐Si:H) thin films limits their widespread use for surface passivation of c‐Si wafers on the rear side of solar cells. We show that the thermal stability of a‐Si:H surface passivation is increased significantly by a hydrogen rich a‐Si:H bulk, which acts as a hydrogen reservoir for the a‐Si:H/c‐Si interface. Based on this mechanism, an excellent lifetime of 5.1 ms (at injection level of 1015 cm–3) is achieved after annealing at 450 °C for 10 min. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Ultra‐thin Cu(In,Ga)Se2 (CIGS) solar cells with an Al2O3 rear surface passivation layer between the rear contact and absorber layer frequently show a “roll‐over” effect in the J–V curve, lowering the open circuit voltage (VOC), short circuit current (JSC) and fill factor (FF), similar to what is observed for Na‐deficient devices. Since Al2O3 is a well‐known barrier for Na, this behaviour can indeed be interpreted as due to lack of Na in the CIGS absorber layer. In this work, applying an electric field between the backside of the soda lime glass (SLG) substrate and the SLG/rear‐contact interface is investi‐gated as potential treatment for such Na‐deficient rear surface passivated CIGS solar cells. First, an electrical field of +50 V is applied at 85 °C, which increases the Na concentration in the CIGS absorber layer and the CdS buffer layer as measured by glow discharge optical emission spectroscopy (GDOES). Subsequently, the field polarity is reversed and part of the previously added Na is removed. This way, the JV curve roll‐over related to Na deficiency disappears and the VOC (+25 mV), JSC(+2.3 mA/cm2) and FF (+13.5% absolute) of the rear surface passivated CIGS solar cells are optimized. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
Hydrogenated silicon (Si:H) film was grown by radio frequency plasma enhanced chemical vapor deposition (PECVD) method. The transition between hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) was characterized by X-ray diffraction analysis. A semiconductor system was used to measure low frequency noise (1/f noise) and random telegraph switching noise of Si:H films. The results show that the 1/f noise of μc-Si:H is 4 orders of magnitude lower than that of a-Si:H and no RTS noise was found in both films. It also shows that using μc-Si:H instead of a-Si:H film as a sensing layer will enable the development of high performance uncooled microbolometer.  相似文献   

16.
Light trapping is a key issue in improving the efficiency of thin-film Si solar cells, and using a back reflector material plays a critical role in improving a cell's light-trapping efficiency. In this study, we developed n-type microcrystalline silicon oxide (n-μc-SiOx) films that are suitable for use as back reflectors in thin-film silicon solar cells. They exhibit a lower refractive index and lower absorption spectra, especially at long wavelengths of >700 nm, than conventional ZnO:Al materials, which are beneficial for this application. The n-μc-SiOx films were prepared by the PECVD (plasma-enhanced chemical vapor deposition) method and applied to the fabrication of back reflectors in μc-Si:H solar cells. We also characterized the changes in cell performance with respect to the refractive index, conductivity, and thickness of the n-μc-SiOx back reflectors. The novel back reflector boosts the total current density by up to 3.0% with the help of the enhanced long-wavelength response. It also improves open circuit voltage (Voc) and fill factor (FF), which may be attributed to the reduced shunt current caused by the anisotropic electrical characteristics of the n-μc-SiOx layer. Finally, we could achieve a conversion efficiency for the hydrogenated microcrystalline silicon (μc-Si:H) solar cells of up to 9.3% (Voc: 0.501 V, Jsc: 27.4 mA/cm2, FF: 0.68) using the n-μc-SiOx back reflector.  相似文献   

17.
Preparation of p-type hydrogenated microcrystalline silicon oxide thin films (p-μc-Si1−xOx:H) by 13.56 MHz RF-PECVD method for use as a p-layer of hetero-junction μc-Si:H solar cells is presented. We investigated effects of wide-gap p-μc-Si1−xOx:H layer on the performance of hetero-junction μc-Si:H solar cells under various light intensity. We observed that a wide-gap p-μc-Si1−xOx:H was effective in improving the open-circuit voltage (Voc) of the solar cells. We also confirmed that the Voc logarithmically increased with increasing light intensity, and the enhancement of Voc became larger with increasing band gap of p-layer. These results indicate that wide-gap p-μc-Si1−xOx:H is a promising material for use as window layer in hetero-junction μc-Si:H solar cells.  相似文献   

18.
报道了采用高压射频等离子体增强化学气相沉积(RF-PECVD) 制备高效率单结微晶硅电池和非晶硅/微晶硅叠层电池时几个关键问题的研究结果, 主要包括: 1)器件质量级本征微晶硅材料工艺窗口的确定及其结构和光电性能表征; 2)孵化层的形成机理以及减小孵化层的有效方法; 3)氢稀释调制技术对本征层晶化率分布及其对提高电池性能的作用; 4)高电导、高晶化率的微晶硅p型窗口层材料的获得, 及其对减小微晶硅电池p/i界面孵化层厚度和提高电池性能的作用等. 在解决上述问题的基础上, 采用高压RF-PECVD制备的单结微晶硅电池效率达8.16%, 非晶硅/微晶硅叠层电池效率11.61%.  相似文献   

19.
Passivation layer with linearly graded bandgap (LGB) was proposed to improve the performance of amorphous/crystalline silicon heterojunction (SHJ) solar cell by eliminating the large abrupt energy band uncontinuity at the a‐Si:H/c‐Si interface. Theoretical investigation on the a‐Si:H(p)/the LGB passivation layer(i)/c‐Si(n)/a‐Si:H(i)/a‐Si:H(n+) solar cell via AFORS‐HET simulation show that such LGB passivation layer could improve the solar cell efficiency (η) by enhancing the fill factor (FF) greatly, especially when the a‐Si:H(p) emitter was not efficiently doped and the passivation layer was relatively thick. But gap defects in the LGB passivation layer could make the improvement discounted due to the open‐circuit voltage (VOC) decrease induced by recombination. To overcome this, it was quite effective to keep the gap defects away from the middle of the bandgap by widening the minimum bandgap of the LGB passivation layer to be a little larger than that of the c‐Si base. The underlying mechanisms were analysed in detail. How to achieve the LGB passivation layer experimentally was also discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
Bulk heterojunction (BHJ) solar cells were fabricated based on blended films of a porphyrin derivative 5,10,15,20-Tetraphenyl-21H,23H-porphine zinc (ZnTPP) and a fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) as the active layer. The ZnTTP:PCBM BHJ solar cells were fabricated by spin-casting of the blended layer. The weight ratios of ZnTPP and PCBM were varied from 1:1 to 0:10. The electronic and optical properties of each cell were investigated. Optical density (OD) of the blended film for each cell was extracted from its reflection and transmission curves. OD and average absorption coefficients of the active materials were used to determine film thicknesses. Absorption spectra of each component material were compared with the spectra of the blended films. Current density–Voltage (JV) characteristics were recorded under dark as well as under the illumination of AM 1.5G (1 sun) solar spectrum. The BHJ solar cell with ZnTPP:PCBM ratio of 1:9 showed the best performance . The values of RR, VOC , JSC , FF and η for these ratios were 106.3, 0.4 V, 1.316 mA/cm2, 0.4 and 0.21%, respectively. The cross-section of this device using SEM was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号