首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mesoporous silicas were synthesized by hydrothermal treatment of selectively acid-treated saponite (an ideal structural formula: Na(1/3)Mg(3)(Si(11/3)Al(1/3))O(10)(OH)(2)), having a 2:1 type layered structure as the silica source and its porous properties were examined and compared with that from kaolinite (an ideal structural formula: Al(2)Si(2)O(5)(OH)(4)), having a 1:1 type layered structure. Synthetic saponite was selectively leached in H(2)SO(4) solutions with various concentrations (0.05-1 M) at 70 degrees C for 0.5 h. The resulting products (precursors) were mixed with cetyltrimethylammonium bromide (CTABr), NaOH and H(2)O, hydrothermally treated at 110 degrees C and removed the CTABr by calcining at 560 degrees C. A hexagonal mesoporous phase was obtained with higher Si/(Al(+Mg)) ratios of the resulting precursors. The XRD patterns of these products show the peaks assigned by a hexagonal lattice with a(0)=4.0-4.6 nm and the crystallinity becomes higher with higher Si/(Al(+Mg)) ratios of the precursors. The specific surface area (S(BET)) values of the present mesoporous silicas range from 800 to 1100 m(2)/g at CTABr/precursor=0.1 and although they are not as high as those from precursors prepared from calcining and acid-treatment of kaolinite (1420 m(2)/g), they are increased to 1400-1500 m(2)/g by increasing the ratio CTABr/precursor 0.2. The reason for the difference in the optimum preparation conditions between saponite and kaolinite may be attributed to the difference in the linkage of the SiO(4) tetrahedra in these precursors (i.e. layered or framework structures), which result in great differences in the selective leaching rates and structures of the resulting silica-rich products.  相似文献   

2.
高骨架铝含量Al-MCM-41的合成   总被引:10,自引:1,他引:10  
制备了不同Al含量的Al-MCM-41试样,其中Si/Al比值最小为3,即最高含铝量x~A~l=0.303。X射线粉末衍射(XRD)分析表明样品具有MCM-41的特征结构,氮气吸附研究表明,样品呈现Ⅳ型吸附等温线,具有孔径分布均一的中孔结构。文中还利用^2^7AlMASNMR研究了试样中Al的化学环境,结果表明,即使在高铝含量的情况下,样品中的铝原子仍以四配位结合在MCM-41的硅骨架上,未能检测出骨架外六配位铝的存在。文中还就Al含量对孔结构的影响以及Al-MCM-41形成机理作了讨论。  相似文献   

3.
MCM-41 and SBA-15 silicas were studied by (29)Si solid-state NMR and (15)N NMR in the presence of (15)N-pyridine with the aim to formulate generic structural parameters that may be used as a checklist for atomic-scale structural models of this class of ordered mesoporous materials. High-quality MCM-41 silica constitutes quasi-ideal arrays of uniform-size pores with thin pore walls, while SBA-15 silica has thicker pore walls with framework and surface defects. The numbers of silanol (Q(3)) and silicate (Q(4)) groups were found to be in the ratio of about 1:3 for MCM-41 and about 1:4 for our SBA-15 materials. Combined with the earlier finding that the density of surface silanol groups is about three per nm(2) in MCM-41 (Shenderovich, et al. J. Phys. Chem. B 2003, 107, 11924) this allows us to discriminate between different atomic-scale models of these materials. Neither tridymite nor edingtonite meet both of these requirements. On the basis of the hexagonal pore shape model, the experimental Q(3):Q(4) ratio yields a wall thickness of about 0.95 nm for MCM-41 silica, corresponding to the width of ca. four silica tetrahedra. The arrangement of Q(3) groups at the silica surfaces was analyzed using postsynthesis surface functionalization. It was found that the number of covalent bonds to the surface formed by the functional reagents is affected by the surface morphology. It is concluded that for high-quality MCM-41 silicas the distance between neighboring surface silanol groups is greater than 0.5 nm. As a result, di- and tripodical reagents like (CH(3))(2)Si(OH)(2) and CH(3)Si(OH)(3) can form only one covalent bond to the surface. The residual hydroxyl groups of surface-bonded functional reagents either remain free or interact with other reagent molecules. Accordingly, the number of surface silanol groups at a given MCM-41 or SBA-15 silica may not decrease but increase after treatment with CH(3)Si(OH)(3) reagent. On the other hand, nearly all surface silanol groups could be functionalized when HN(Si(CH(3))(3))(2) was used.  相似文献   

4.
A series of aluminum-containing kanemite (Al-kanemite) samples with several Si/Al molar ratios were synthesized. The Al-kanemite samples were pillared with silica. X-ray diffractograms showed that the layered structure of the Al-kanemite samples was maintained at Si/Al= infinity approximately 10 but was broken at Si/Al = 5, 2.5, and 1. 29Si MAS NMR spectra of the Al-kanemite samples, except for that of Si/Al = 1, mainly showed peaks of Q(3) sites, which were attributed to Si(OSi)(3)(OH) groups, although peaks assigned to Si(OAl)(OSi)(2)(OH) were also seen. The 27Al MAS NMR spectra indicated that the Al-kanemite samples had only four-coordinate aluminum atoms. The FTIR spectra of pyridine adsorbed on the pillared Al-kanemite derivatives revealed Lewis acid sites on the surface. The nitrogen adsorption isotherms of the derivatives were classified as type I (Langmuir) absorption isotherms. Using the alpha(s) method, the specific surface areas of the derivatives were 572-756 m(2)g(-1), and the pore sizes were calculated as 1.25-1.83 nm. The pillared Al-kanemite derivatives had slit-shaped micropore structures.  相似文献   

5.
The calcium silicate hydrate (C-S-H) phase resulting from hydration of a white Portland cement (wPc) in water and in a 0.3 M NaAlO(2) solution has been investigated at 14 and 11 hydration times, respectively, ranging from 6 h to 1 year by (27)Al and (29)Si MAS NMR spectroscopy. (27)Al MAS NMR spectra recorded at 7.05, 9.39, 14.09, and 21.15 T have allowed a determination of the (27)Al isotropic chemical shift (delta(iso)) and quadrupolar product parameter (P(Q) = C(Q)) for tetrahedrally coordinated Al incorporated in the C-S-H phase and for a pentacoordinated Al site. The latter site may originate from Al(3+) substituting for Ca(2+) ions situated in the interlayers of the C-S-H structure. The spectral region for octahedrally coordinated Al displays resonances from ettringite, monosulfate, and a third aluminate hydrate phase (delta(iso) = 5.0 ppm and P(Q) = 1.20 MHz). The latter phase is tentatively ascribed to a less-crystalline aluminate gel or calcium aluminate hydrate. The tetrahedral Al incorporated in the C-S-H phase has been quantitatively determined from (27)Al MAS spectra at 14.09 T and indirectly observed quantitatively in (29)Si MAS NMR spectra by the Q(2)(1Al) resonance at -81.0 ppm. A linear correlation is observed between the (29)Si MAS NMR intensity for the Q(2)(1Al) resonance and the quantity of Al incorporated in the C-S-H phase from (27)Al MAS NMR for the different samples of hydrated wPc. This correlation supports the assignment of the resonance at delta(iso)((29)Si) = -81.0 ppm to a Q(2)(1Al) site in the C-S-H phase and the assignment of the (27)Al resonance at delta(iso)((27)Al) = 74.6 ppm, characterized by P(Q)((27)Al) = 4.5 MHz, to tetrahedrally coordinated Al in the C-S-H. Finally, it is shown that hydration of wPc in a NaAlO(2) solution results in a C-S-H phase with a longer mean chain length of SiO(4) tetrahedra and an increased quantity of Al incorporated in the chain structure as compared to the C-S-H phase resulting from hydration of wPc in water.  相似文献   

6.
29Si chemical shift anisotropy (CSA) data have been determined from (29)Si MAS NMR spectra recorded at 14.1 T for a number of synthetic calcium silicates and calcium silicate hydrates. These are beta- and gamma-Ca(2)SiO(4), Ca(3)SiO(4)Cl(2), alpha-dicalcium silicate hydrate (alpha-Ca(2)(SiO(3)OH)OH), rankinite (Ca(3)Si(2)O(7)), cuspidine (Ca(4)Si(2)O(7)F(2)), wollastonite (beta-Ca(3)Si(3)O(9)), pseudowollastonite (alpha-Ca(3)Si(3)O(9)), scawtite (Ca(7)(Si(6)O(18))CO(3).2H(2)O), hillebrandite (Ca(2)SiO(3)(OH)(2)), and xonotlite (Ca(6)Si(6)O(17)(OH)(2)). The (29)Si MAS NMR spectra of rankinite and wollastonite clearly resolve manifolds of spinning sidebands from two and three Si sites, respectively, allowing the CSA parameters to be obtained with high precision for each site. For the (29)Si Q(1) sites in rankinite and cuspidine, the CSA asymmetry parameters (eta(sigma) approximately 0.6) contrast the general expectation that sorosilicates should possess small eta(sigma) values as a result of the nearly axially symmetric environments of the SiO(4) tetrahedra. The (29)Si CSA parameters provide an improved insight into the electronic and geometric environments for the SiO(4) tetrahedra as compared to the values solely for the isotropic chemical shift. It is shown that the shift anisotropy (delta(sigma)) and the CSA asymmetry parameter (eta(sigma)) allow a clear distinction of the different types of condensation of SiO(4) tetrahedra in calcium silicates. This relationship may in general be valid for neso-, soro-, and inosilicates. The CSA data determined in this work may form a valuable basis for (29)Si MAS NMR studies of the structures for tobermorites and calcium silicate hydrate phases resulting from hydration of Portland cements.  相似文献   

7.
The (17)O NMR spectrum of CaAl(2)Si(2)O(8) glass shows two types of O sites that are not present in the crystalline material. One of these, with (17)O NMR parameters C(Q) = 2.3 MHz and delta = +20 ppm, has been assigned to a "tricluster" O, a local geometry in which the O is coordinated to three tetrahedrally coordinated atoms, either Al or Si. For crystalline CaAl(4)O(7), a tricluster site (with three Al linkages to O, i.e., OAl(3)) has been characterized experimentally, with a C(Q) of 2.5 MHz and a delta of about +40 ppm. Thus, a C(Q) value of 2.5 MHz or less seems to be a characteristic of such sites, although they may show a range of delta values. However, several different quantum chemical cluster calculations employing energy-optimized geometries for various tricluster species have given C(Q) values considerably larger than that seen experimentally in the CaAl(2)Si(2)O(8) glass (with minimum C(Q) values of 3.0 MHz even for all Al species). We have recently shown that for edge-sharing geometries, in which the tricluster O atoms participate in "two-membered rings" of composition Al(2)O(2), the calculated C(Q) values are considerably lower, in the range identified in the glass. However, such two-membered ring geometries had been observed only in crystalline inorganic alumoxanes. Ab initio MD calculations on related compositions, such as the calcium aluminosilicate, CAS, (CaO)(0.21)(Al(2)O(3))(0.12)(SiO(2))(0.67), show a small percentage of O triclusters, but none in two-membered rings of the Al(2)O(2) type, and the calculated C(Q) values for the triclusters that do exist are higher than seen in the original experiments on CaAl(2)Si(2)O(8) glass and not significantly different from those for two-coordinate O in Si-O-Al sites. However, a classical MD simulation of the structure of glassy aluminum silicate AS2, (Al(2)O(3))2(SiO(2)), gave a predominance of O triclusters within two-membered rings, with structures much like those seen in the alumoxanes. We have now calculated (17)O nuclear quadrupole coupling constants and NMR shielding values for clusters extracted from these simulations, using standard quantum chemical methods. The calculated C(Q) values for these O triclusters are now in the range observed experimentally in the CaAl(2)Si(2)O(8) glass (around 2.3-2.6 MHz) when the tricluster O is surrounded by three Al, two of which are part of an Al(2)O(2) ring. This supports the experimentalists' contention that such tricluster O species do exist and have been seen by (17)O NMR.  相似文献   

8.
张波  汤明慧  袁剑  吴磊 《催化学报》2012,33(6):914-922
采用浸渍法制备了Si-MCM-41和Al-MCM-41(Si/Al=50)介孔分子筛,SiO2,γ-Al2O3及MgO等负载的ZrO2催化剂,考察了其在以异丙醇为氢源苯甲醛Meerwein-Ponndorf-Verley(MPV)还原反应中的催化活性,并与纯ZrO2的催化活性进行对比.同时,采用X射线衍射、N2吸脱附法、X射线光电子能谱、紫外-可见漫反射光谱和吡啶原位吸附红外光谱等手段表征了催化剂.结果表明,ZrO2负载于Si-MCM-41,Al-MCM-41和SiO2后,催化活性明显提高,这归因于ZrO2与载体间存在强相互作用形成ZrOSi键,使催化剂表面ZrOH数量显著增多,Lewis酸中心强度增强,并出现Brnsted酸中心,三种催化剂的活性高低次序是5%ZrO2/Si-MCM-41>5%ZrO2/Al-MCM-41>5%ZrO2/SiO2.而5%ZrO2/Al2O3和5%ZrO2/MgO基本无催化活性,可归因为ZrO2与γ-Al2O3的弱相互作用使5%ZrO2/Al2O3的酸性与γ-Al2O3类似,ZrO2与MgO的强相互作用使5%ZrO2/MgO基本无酸性.  相似文献   

9.
以硅酸钠为硅源、硫酸铝为铝源、CTAB为模板剂,采用水热法合成了负载型固体酸Al-MCM-41中孔分子筛催化剂,并通过X射线衍射(XRD)、热重差热分析(TG-DTA)、扫描电镜(SEM)和红外(IR)方法对其进行了表征,同时研究了该催化剂在二芳基乙烷合成反应中的催化性能。考察了各种反应因素的影响,确定其最佳合成条件为:原料苯乙烯与二甲苯质量之比为1∶7.5,催化剂用量为1 %(总投料质量百分比),反应时间为3 h,反应温度为140 ℃,产率可达87.1 %,比传统催化剂浓硫酸提高了17 %。研究结果表明,该催化剂是替代液体酸合成二芳基乙烷的理想固体酸催化剂。  相似文献   

10.
以硅酸钠为硅源、硫酸铝为铝源、CTAB为模板剂,采用水热法合成了骨架负载型固体酸Al-MCM-41介孔分子筛催化剂,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)和红外(IR)方法对其进行了表征,同时研究了该催化剂在二芳基乙烷合成反应中的催化性能. 考察了各种反应因素的影响,确定其最佳合成条件为:原料m(苯乙烯)∶m(二甲苯)=1∶7.5,催化剂用量为1%(总投料质量分数),反应时间为3 h,反应温度为140 ℃,产率可达87.1%,比传统催化剂浓硫酸提高了17%. 研究结果表明,该催化剂是替代液体酸合成二芳基乙烷的理想固体酸催化剂.  相似文献   

11.
We have investigated the use of supercritical fluids (SCFs) as carriers/solvents during the postsynthesis alumination of mesoporous silica. SCFs were found to be ideally suited for transport of Al into mesoporous silica and to lead to Al-grafted aluminosilicate materials that exhibit exceptional hydrothermal (steam) stability even for highly aluminated materials. The improvements in steam stability arising from the use of SCFs as grafting media (as compared to aqueous or organic solvents) are remarkable, especially for Al-grafted MCM-41 materials with high (Si/Al < or = 10) Al contents. It is proposed that under supercritical fluid conditions Al is sorbed on the surface of the pore walls of the host Si-MCM-41 with little penetration into the pore wall region, that is, the low solvating power of SCFs ensures the deposition of Al onto rather than into the silica framework. This is because the host silica framework cannot undergo any significant hydrolysis (to allow penetration of Al into the pore wall region) during the SCF-mediated alumination. Removal of the Al (i.e., dealumination) which occurs during steaming is therefore less detrimental to the structural integrity of SCF-grafted Al-MCM-41 materials since any dealumination that occurs will not involve removal of Al from deep within the pore walls.  相似文献   

12.
The Mobil Composition of Matter No. 41 (MCM-41) containing Cu and Al with Si/Al ratios varying from 100 to 10 and 1 to 6 wt.% of Cu was synthesized under hydrothermal and impregnation conditions, respectively. The samples were characterized by nitrogen adsorption–desorption measurements, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD), and 29Si and 27Al magic-angle spinning–nuclear magnetic resonance (MAS–NMR) spectra. X-ray diffraction patterns indicate that the modified materials retain the standard MCM-41 structure. TPR patterns show the two-step reduction of Cu species. TPD study shows that Cu-impregnated Al-MCM-41 samples are more acidic than Al-MCM-41. From the MAS–NMR it was confirmed that most of the Al atoms are present tetrahedrally within the framework and some are present octahedrally in extraframework position. Impregnation of Cu shifted Al to the extraframework position. The catalytic activity of the samples toward hydroxylation of phenol in aqueous medium was evaluated using H2O2 as the oxidant at 80 °C. The effects of reaction parameters such as temperature, catalyst amount, amount of H2O2, and solvent were also investigated. Sample containing 4 wt.% copper-loaded Al-MCM-41-100 showed high phenol conversion (78%) with 68% catechol and 32% hydroquinone selectivity.  相似文献   

13.
Abstract

Al-MCM-41 samples with various Si/Al ratios were prepared and then used to disproportionate methyltrichlorosilane (MTS) to produce dichlorodimethylsilane (DMCS). The catalysts were characterized by FT-IR, X-ray powder diffraction (XRD), 27Al magic angle spinning nuclear magnetic resonance (27Al MAS NMR), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and N2 absorption–desorption. It reveals that all samples show the hexagonal structure of MCM-41 and exhibit large BET surface areas (over 842 m2·g?1). FT-IR spectra of pyridine adsorption demonstrates that Al-MCM-41 samples have Lewis (L) and Brønsted (B) acidic sites, and the B acidic sites are stable in the temperature ranging from 423 to 623 K. The effects of aluminum content and temperature on the disproportionation reaction were also investigated. The results show that the Al-MCM-41 with the Si/Al ratio of 15:1 exhibits an excellent activity with 100% conversion of MTS and 47% selectivity of DMCS at 623 K under atmospheric pressure.  相似文献   

14.
To distinguish thin deposited film characteristics clearly from the influence of substrate morphological properties, the growth mechanism and the macroscale and nanoscale properties of nanoporous SiO(2) films deposited on nonporous silica (SiO(2)) substrates from chemical precursors Si(OH)(4) and TEOS (tetraethoxysilane) via low-pressure chemical vapor deposition are the primary targets of this study. This work employs a kinetic Monte Carlo (KMC) simulation method coupled to the Metropolis Monte Carlo method to relax the strained silica structure. The influence of the deposition temperature (473, 673, and 873 K) on the properties of the SiO(x) layers is addressed via analysis of the film growth rates, density profiles of the deposited thin films, pore size distributions, carbon depth profiles (with respect to TEOS), and voidage analysis for layers of different thicknesses (8-18 nm). A comparison of simulation with experimental results is also carried out.  相似文献   

15.
在蒸气相中合成中孔分子筛MCM—41及其孔结构参数的表征   总被引:6,自引:0,他引:6  
在水蒸气中,由含表面活性剂十六烷基三甲基溴化铵的无定形凝胶合成出Si-MCM-41和Al-Si-MCM-41分子筛纯相,研究了它们的合成条件。  相似文献   

16.
Al-containing mesoporous silicas were synthesized by hydrothermal treatment of microporous silica prepared by selectively acid leached metakaolinites with Si/Al = 3.9-92.5 mixed with a surfactant of cetyltrimethylammonium bromide (CTABr). The specific surface area of the products increased with higher surfactant/microporous silica (surf/Si) ratio and Si/Al ratio of the microporous silica, reaching about 1400 m2/g at CTABr/Si 0.1 and Si/Al 40. The XRD patterns of these products show a hexagonal (100) peak with the lattice parameter a0=4.2-4.3 nm and the N2 adsorption isotherms show steep increase of adsorption between relative pressure of 0.3 and 0.4. Hexagonal mesoporous microstructure is observed by high resolution TEM. The pore size distributions of the products show a sharp peak at 2.8 nm by the BJH method. The high specific surface area of the present mesoporous samples is attributed to the lower matrix density and surface roughness of mesopore wall. The highest specific surface area of the products reached up to 1420 m2/g and this value is apparently higher than those reported in hexagonal mesoporous silicas. A unique microporous structure of the starting material is thought to be related to achieve such a high specific surface area of the products.  相似文献   

17.
Two (17)O-enriched hydrous magnesium silicates, the minerals hydroxyl-chondrodite (2Mg(2)SiO(4).Mg(OH)(2)) and hydroxyl-clinohumite (4Mg(2)SiO(4).Mg(OH)(2)), were synthesized. High-resolution "isotropic" (17)O (I = (5)/(2)) NMR spectra of the powdered solids were obtained using three- and five-quantum MAS NMR at magnetic field strengths of 9.4 and 16.4 T. These multiple-quantum (MQ) MAS spectra were analyzed to yield the (17)O isotropic chemical shifts (delta(CS)) and quadrupolar parameters (C(Q), eta and their "product" P(Q)) of the distinct oxygen sites resolved in each sample. The values obtained were compared with those found previously for forsterite (Mg(2)SiO(4)). The (17)O resonances of the protonated (hydroxyl) sites were recorded and assigned with the aid of (17)O [(1)H] cross-polarization and comparison with the spectrum of (17)O-enriched brucite (Mg(OH)(2)). Using all of these data, complete assignments of the five crystallographically inequivalent oxygen sites in hydroxyl-chondrodite and of the nine such sites in hydroxyl-clinohumite are suggested. The validity of these assignments are supported by the observation of a correlation between (17)O isotropic chemical shift and Si-O bond length. The (29)Si MAS NMR spectra of the two minerals were also obtained.  相似文献   

18.
Two mesostructured MCM-41 silicas that differ dramatically in hydrothermal stability have been examined by (29)Si MAS NMR spectroscopy and pair distribution function (PDF) analysis of synchrotron X-ray scattering data. The less stable mesostructure assembled from sodium silicate and the substantially more stable derivative made from fumed silica possess equivalent local framework wall structures, as judged by NMR and PDF methods. Approximately 80% of the SiO(4) tetrahedra are fully cross-linked as Q(4) (Si(OSi)(4)) units in both calcined samples. Additionally, the structural correlation distances for the two materials are nearly identical, having values of 1.62(1), approximately 2.60, and 3.09(1) A for the Si-O, O-O, and nearest neighbor Si-Si distances in the framework. Sodium ions in the framework play a crucial role in limiting the hydrothermal stability of the mesostructure. Residual sodium ( approximately 0.05-0.10% Na(2)O) is retained in the MCM-41 made from sodium silicate, even after two ion exchange reactions with ammonium ions in more than 300 - fold excess. The entrapped framework sodium ions catalyze the collapse of the mesopores upon exposure to 20% steam at 800 degrees C for 5 h. The sodium - free mesostructure assembled from fumed silica retains an open framework under the same hydrothermal conditions. The stability of the fumed silica derivative, however, is greatly compromised when doped with as little as 0.10% Na(2)O, thus confirming the deleterious effect of sodium on hydrothermal stability.  相似文献   

19.
The effect of hydrothermal treatment of the synthesis gel on the structure, hydrothermal and mechanical stabilities and acidity of MCM-41 and MCM-48 aluminosilicates synthesised at room temperature has been investigated by X-ray diffraction, nitrogen adsorption at 77 K and DRIFTS with pyridine as probe molecule. The influence of the Al content and pore size on the structure of the resulting treated Al-MCM-41 materials has also been studied. For all samples improvement of the structural ordering and increase of the pore size, was observed, with pore wall thickness remaining practically unchanged. For Al-MCM-48 an improvement of the pore size uniformity occurs during the treatment. Only a small loss of pore size uniformity occurred for Al-MCM-41 prepared with hexadecyltrimethylammonium bromide, but with samples prepared with tetra and octadecyltrimethylammonium bromide the treatment generated a bimodal pore size distribution. The pore volume increased (17%) in the case of Al-MCM-48 but decreased (5.5–14%) for Al-MCM-41, suggesting a decrease in surface roughness resulting from increase of the degree of condensation of the pore walls. Both treated and untreated samples presented relatively strong Brønsted sites and increase of the Lewis acidity was found to occur upon treatment. Treated samples were found to be more resistant to refluxing in boiling water and mechanical compaction, which was attributed to more polymerised pore walls, with Al-MCM-41 samples tested demonstrating higher stability than Al-MCM-48. However, the differences in stability of samples prepared with or without hydrothermal treatment were not significant. Both treated and untreated samples presented high hydrothermal stability. Although refluxing in boiling water lead to some loss of structural ordering, only a small decrease of pore volume (3–5.5% for Al-MCM-41 and 8-14% for Al-MCM-48) occurred, with practically no alterations in pore size and wall thickness. Ordered mesopore structure, with narrower pores and thicker walls, was still observed after compression at 590 MPa for most of the samples tested.  相似文献   

20.
Porous hybrid materials have been fabricated by sol-gel processing of tetraethoxysilane (TEOS) and 1,3,5,7-tetramethyl-tetrakis(ethyltriethoxysilane)-cyclotetrasiloxane (1) in the presence of the cationic surfactant, cetyltrimethylammonium bromide (CTAB). The chemical and physical properties of these materials have been analysed by FT-IR spectroscopy, solid state 29Si NMR spectroscopy, powder X-ray diffraction and nitrogen adsorption-desorption studies. FT-IR spectroscopy established that the CTAB surfactant can be extracted from a crushed gel using ethanol as a solvent. Solid state 29Si NMR spectroscopy showed the presence of D, T and Q species as expected from the structure of the precursors. Broad bands observed for the D units at –18 ppm and the T units at –63 ppm suggested that the cyclotetrasiloxane was held in a rigid environment and bound to the Q species of the silica matrix derived from the TEOS. NMR spectroscopy confirmed that solvent extraction resulted in further condensation of the silica matrix. Powder X-ray diffraction indicated that the materials possess short-range order and small domain sizes, as shown by broad diffraction peaks. The condensation induced by solvent extraction led to a decrease in the lattice and domain size of the samples, generally resulting in a less ordered material. Nitrogen adsorption-desorption isotherms were typical of microporous materials with pore diameters of 18 Å and a narrow size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号