首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Electronic structure calculations were performed at the B3LYP/6-31G level to identify the stationary structures on the potential energy surfaces for the transmetalation of 2-trimethylstannylbuta-1,3-diene with SnCl(4). The reaction pathways were characterized by locating the transition states on the intrinsic reaction coordinate. The calculations showed that the reaction between the reactant and SnCl(4), which generates 1-trichlorostannylbuta-2,3-diene via transmetalation, has a low energy barrier of 78.1 kJ.mol(-)(1). The following isomerization process is the rate-controlling step. It turned out that the isomerization process from 1-trichlorostannylbuta-2,3-diene to 2-trichloro-stannylbuta-1,3-diene via transmetalation with SnCl(4) is more energetically favorable than other possible isomerization processes.  相似文献   

2.
The N2O4 isomerization in gas phase has an energy barrier of 31 kcal mol-1 at 298 K. This energy barrier may be reduced due to the interaction of the N2O4 isomers with water or nitric acid clusters adsorbed on surfaces. The Gibbs free energy barrier for this reaction in water medium is estimated to be reduced to 21.1 kcal mol-1 by using the ab initio calculations and the polarizable continuum model (PCM). By using the transition state theory (TST), this model estimates that the N2O4 isomerization may be as fast as 2.0 x 10(-3) s-1 in aqueous phase at room temperature, which confirms the Finlayson-Pitts model for the heterogeneous hydrolysis of NO2 on surfaces. The activation energy of the N2O4 isomerization is about 21 kcal mol-1. The rate coefficient for this reaction is considerably fast, 1.2 x 10(-2) s-1, in aqueous phase at T = 373 K.  相似文献   

3.
The lowest-lying electronic singlet and triplet potential energy surfaces (PES) for the HNO-NOH system have been investigated employing high level ab initio quantum chemical methods. The reaction energies and barriers have been predicted for two isomerization and four dissociation reactions. Total energies are extrapolated to the complete basis set limit applying focal point analyses. Anharmonic zero-point vibrational energies, diagonal Born-Oppenheimer corrections, relativistic effects, and core correlation corrections are also taken into account. On the singlet PES, the (1)HNO → (1)NOH endothermicity including all corrections is predicted to be 42.23 ± 0.2 kcal mol(-1). For the barrierless decomposition of (1)HNO to H + NO, the dissociation energy is estimated to be 47.48 ± 0.2 kcal mol(-1). For (1)NOH → H + NO, the reaction endothermicity and barrier are 5.25 ± 0.2 and 7.88 ± 0.2 kcal mol(-1). On the triplet PES the reaction energy and barrier including all corrections are predicted to be 7.73 ± 0.2 and 39.31 ± 0.2 kcal mol(-1) for the isomerization reaction (3)HNO → (3)NOH. For the triplet dissociation reaction (to H + NO) the corresponding results are 29.03 ± 0.2 and 32.41 ± 0.2 kcal mol(-1). Analogous results are 21.30 ± 0.2 and 33.67 ± 0.2 kcal mol(-1) for the dissociation reaction of (3)NOH (to H + NO). Unimolecular rate constants for the isomerization and dissociation reactions were obtained utilizing kinetic modeling methods. The tunneling and kinetic isotope effects are also investigated for these reactions. The adiabatic singlet-triplet energy splittings are predicted to be 18.45 ± 0.2 and 16.05 ± 0.2 kcal mol(-1) for HNO and NOH, respectively. Kinetic analyses based on solution of simultaneous first-order ordinary-differential rate equations demonstrate that the singlet NOH molecule will be difficult to prepare at room temperature, while the triplet NOH molecule is viable with respect to isomerization and dissociation reactions up to 400 K. Hence, our theoretical findings clearly explain why (1)NOH has not yet been observed experimentally.  相似文献   

4.
The complex potential energy surface and reaction mechanisms for the unimolecular isomerization and decomposition of methyl-nitramine (CH3NHNO2) were theoretically probed at the QCISD(T)/6-311+G*//B3LYP/6-311+G* level of theory. The results demonstrated that there are four low-lying energy channels: (i) the NN bond fission pathway; (ii) a sequence of isomerization reactions via CH3NN(OH)O; (IS2a); (iii) the HONO elimination pathway; (iv) the isomerization and the dissociation reactions via CH3NHONO (IS3). The rate constants of each initial step (rate-determining step) for these channels were calculated using the canonical transition state theory. The Arrhenius expressions of the channels over the temperature range 298-2000 K are k6(T)=1014:8e-46:0=RT , k7(T)=1013:7e-42:1=RT , k8(T)=1013:6e-51:8=RT and k9(T)=1015:6e-54:3=RT s-1, respectively. The calculated overall rate constants is 6.9£10-4 at 543 K, which is in good agreement with the experimental data. Based on the analysis of the rate constants, the dominant pathway is the isomerization reaction to form CH3NN(OH)O at low temperatures, while the NN bond fission and the isomerization reaction to produce CH3NHONO are expected to be competitive with the isomerization reaction to form CH3NN(OH)O at high temperatures.  相似文献   

5.
Rotational isomerization of acetic acid (CH3COOH) is studied in Ar, Kr, and Xe matrices. The light-induced trans-->cis reaction is promoted using resonant excitation of a number of modes in the 3500-7000 cm(-1) region, and the quantum yields for this process are measured for various acetic acid isotopologues and matrix materials. For excitation of acetic acid at energies above the predicted isomerization energy barrier (> or =4400 cm(-1)), the measured quantum yields are in average 2%-3%, and this is one order of magnitude smaller than the corresponding values known for formic acid (HCOOH). This difference is interpreted in terms of the presence of the methyl group in acetic acid, which enhances energy relaxation channels competing with the rotational isomerization. This picture is supported by the observed large effect of deuteration of the methyl group on the photoisomerization quantum yield. The trans-->cis reaction quantum yields are found to be similar for Ar, Kr, and Xe matrices, suggesting similar energy relaxation processes for this molecule in the various matrices. The IR-induced cis-->trans process, studied for acetic acid deuterated in the hydroxyl group, shows reliably larger quantum yields as compared with the trans-->cis process. For pumping of acetic acid at energies below the predicted isomerization barrier, the trans-->cis reaction quantum yields decrease strongly when the photon energy decreases, and tunneling is the most probable mechanism for this process. For the cis-->trans dark reaction, the observed temperature and medium effects indicate the participation of the lattice phonons in the tunneling-induced process.  相似文献   

6.
过亚硝酸异构化反应机理的密度泛函理论研究   总被引:1,自引:0,他引:1  
王辉宪  彭清静  罗明道  曾跃 《化学学报》2003,61(10):1577-1581
用密度泛函理论方法研究了过亚硝酸在水溶液中的异构化反应机理。在 B3LYP/6-31G水平基础上用梯度解析技术全自由度优化了反应物、产物和反应途径 中的中间产物及过渡态的几何构型,并通过振动频率分析加以确认,进行了内禀反 应坐标计算,确定了该反应的可能通道。结果表明:该反应为多通道强放热反应, 其中以羟基直接转移途经能垒最小,绝对反应速率常数值最大,因此,推测该通道 为主要的反应通道。  相似文献   

7.
Theoretical studies on the α- and β-forms nitroguanidine were carried out using ab initio theoretical methods, at the MP2/6-31G(d,p) level. The predicted geometrical parameters were in good agreement with the available theoretical values, which calculated by other author. The three C-N bond lengths in α-form nitroguanidine were different, the longest bond length was 1.430 A, the shortest was 1.283 A. But they were almost similar in β-form, the longest was 1.375 A, the shortest was 1.322 A. Therefore there were conjugative effects in β-form but not in α-form. The calculated results also show that the β-form is stable with respect to the α-form from energetically, lower 28.16 kJ/mol corrected with zero point vibrational energy. The transition-state for the unimolecular isomerization was conformed by the IRC calculation. The calculated energy barrier for the direct intramolecular hydrogen atom transfer isomerization process was 132.95 kJ/mol. The isomerization reaction, exothermal reaction, is a typical intramolecular hydrogen atom synfacial transfer reaction. Rate constants of the isomerization reaction were evaluated within the temperature range of 200-1773 K by the classical transition state theory. The rate constant was 1.99×10-11 s-1 and the equilibrium constant was 1.00×105 at 298 K. With the temperature increasing, the equilibrium value decayed and the reaction process was more difficult.  相似文献   

8.
BrSSCl和SSBrCl相对稳定性的理论研究   总被引:1,自引:0,他引:1  
采用量子化学中的密度泛函理论,在B3LYP/6-311 G(3df)水平上全优化得到了S2BrCl分子线型和分叉型2种异构体的平衡结构,同时对可能发生的分子内原子迁移过程的过渡态进行了考察。计算结果表明,从能量角度看,线型的BrSSCl为稳定构型。采用统计热力学及过渡态理论,研究了Z种平衡结构之间相互转化的热力学和动力学性质。根据计算结果,无论是Cl迁移还是Br迁移,分子内的原子迁移都需要较高的活化能,并且迁移速度较慢。  相似文献   

9.
Zeaxanthin is a xanthophyll pigment that plays important physiological functions both in the plant and in the animal kingdom. All-trans is a stereochemical conformation of zeaxanthin reported as specific for the thylakoid membranes of the photosynthetic apparatus and the retina of an eye. On the other hand, the pigment is subjected, in natural environment, to the conditions that promote stereochemical isomerization, such as illumination and elevated temperature. In the present work, the light-induced and heat-induced (the temperature range 35-95 degrees C) isomerization of all-trans zeaxanthin in organic solvent environment has been analyzed by means of the HPLC technique. The 13-cis conformation has been identified as a major one among the isomerization products. The activation energy of the all-trans to 13-cis isomerization has been determined as 83 +/- 4 kJ/mol and the activation energy of the back reaction as 30 +/- 7 kJ/mol. The reaction of isomerization of the all-trans zeaxanthin at 25 degrees C was substantially more efficient upon illumination. Four different wavelengths of light have been selected for photo-isomerization experiments: 450, 540, 580 and 670 nm, corresponding to the electronic transitions of zeaxanthin from the ground state to the singlet excited states: 1(1)Bu+,3(1)Ag-,1(1)Bu- and 2(1)Ag-, respectively. The quantum efficiency of the all-trans zeaxanthin isomerization induced by light at different wavelengths: 450, 540, 580 and 670 nm was found to differ considerably and was in the ratio as 1:15:160:29. The sequence of the quantum efficiency values suggests that the carotenoid triplet state 1(3)Bu, populated via the internal conversion from the 1(3)Ag triplet state which is generated by the intersystem crossing from the 1(1)Bu- state may be involved in the light-induced isomerization. A physiological importance of the isomerization of zeaxanthin in the retina of an eye, photosynthetic apparatus and of the pigment active as a blue light photoreceptor in stomata is briefly discussed.  相似文献   

10.
用常温正丁烷异构化反应表征固体超强酸性   总被引:8,自引:0,他引:8  
研究了室温下固体超强酸催化剂上正丁烷反应,发现转化率低于50%时,异构化选择性高于95%,正丁烷异构化反应动力学符合一级可逆反应规律,固体超强酸的酸强度与正丁烷异构化反应转化率和速率常数呈顺变关系,与反应表现活化能呈逆变关系.报出了一种新的表征固体超强酸性的实验方法.  相似文献   

11.
用密度泛函理论(DFT)在B3LYP/6-31G(d, p)的计算水平上研究了离子液中1-乙基-3-甲基咪唑阳离子(EMIM+)的4-H和5-H原子催化丁烯双键异构反应的可能途径,优化了反应体系的平衡态和过渡态的几何构型,分析了反应过程中键参数的变化,通过振动分析对平衡态和过渡态进行了验证. 计算结果表明, 离子液中的EMIM+首先通过4-H和5-H原子吸附丁烯, 进而催化丁烯的双键异构反应, EMIM+的4-H和5-H催化1-丁烯异构为2-丁烯的正反应活化能分别为204.2和207.3 kJ•mol-1,逆反应活化能约为220.9和223.8 kJ•mol-1, 反应为基元反应.  相似文献   

12.
Neat reaction between HgI2 and 1-methyl-2-(phenylazo)imidazole (Pai-Me) under microwave irradiation has isolated a novel compound whose structure shows intercalated HgI2 in the layers of Pai-Me. They exist independently in interpenetrated arrays. In a solution phase study, the same reaction has synthesized an iodo-bridged azoimidazole-Hg(II) complex, [Hg(RaaiR')(mu-I)(I)]2 (RaaiR' = 1-alkyl-2-(arylazo)imidazole). The structures have been characterized by X-ray diffraction studies. Chloro-bridged Hg(II) complexes of azoimidazoles, [Hg(RaaiR')(mu-Cl)(Cl)]2, are also known. These complexes upon irradiation with UV light show trans-to-cis isomerization. The reverse transformation, cis-to-trans isomerization, is very slow with visible light irradiation. Quantum yields (phi t-->c) of trans-to-cis isomerization are calculated, and the free ligand shows higher phi than their Hg(II) complexes. The cis-to-trans isomerization is a thermally induced process. The activation energy (Ea) of cis-to-trans isomerization is calculated by controlled temperature reaction. The Ea's of free ligands are much higher than that of halo-bridged Hg(II)-azoimidazole complexes. Chloro-bridged Hg(II) complexes show lower Ea's than those of iodo-bridged complexes. DFT calculation has been adopted to rationalize the experimental results.  相似文献   

13.
Using the CCSD(T)/cc-pVDZ//B3LYP/6-311G(2d,2p) method, we calculated the detailed potential energy surfaces (PESs) for the unimolecular isomerization and decomposition of methyl peroxynitrate (CH3O2NO2). The results show that there are the two most stable isomers, IS1a and IS1b, which are a pair of mirror image isomers. From IS1a and IS1b, different isomerization and unimolecular decomposition reaction channels have been studied and discussed. Among them, the predominant thermal decomposition pathways are those leading to CH3O2 + NO2 and cis-CH3ONO + O2. The former is the lowest-energy path through the direct O–N bond rupture in IS1a or IS1b. The PES along the O–N bond in IS1a has been scanned, where the energy of IS1a reaches maximum value of 23.5 kcal/mol when the O–N bond is stretched to about 2.8 Å. This energy is 2.7 kcal/mol larger than the O–N bond dissociation energy (BDE) and 2.8 kcal/mol larger than the experimental active energy. In addition, because the energy barriers of IS1a isomerization to IS2a are 23.8 kcal/mol, close to the 20.8 kcal/mol O–N BDE in IS1a or IS1b, the isomerization reaction may compete with the direct bond rupture dissociation reaction.  相似文献   

14.
以聚四苯基卟啉(P-TPP)为敏化剂,研究了2,3-二羧基-双环[2.2.1]-2,5-庚二烯(N)的光化学价键异构化反应,在0.1mol/L的碳酸钠甲醇溶剂中,在适量的P-TPP存在下,可见光照射时,N可以定量地转化为2,3-二羧基四环[2.2.1.02,6.03,5]庚烷(Q),Q在聚四苯基卟啉钴络合物(Co-P-TPP)催化剂的作用下,又可定量地异构化返回N.分别研究了敏化剂和催化剂用量对反应的影响。通过反应物之间激发态能量的比较及N对P-TPP荧光的猝灭试验,证明光异构化反应是通过电子转移反应机制进行的。  相似文献   

15.
应用量子化学从头计算和密度泛函理论(DFT)对CS分子和NO分子的反应机理进行了研究. 在B3LYP/6- 311G**和CCSD(T)/6-311G**水平上计算了CS分子与NO分子反应的二重态和四重态反应势能面. 计算结果表明, 二重态反应势能面中, CS分子的C端和NO的N端连接是主要的反应方式. 反应物先经过过渡态TS1, 形成具有直线结构的中间体1 (CSNO). 中间体1经过一系列异构化得到主要产物P1 (CO+SN). 此反应是放热反应, 反应热为-183.75 kJ/mol . 而四重态由于反应入口势垒过高, 是不重要的.  相似文献   

16.
The kinetics and thermodynamics of the liquid phase isomerization of an α- and β-pinene mixture on a Pd/C catalyst were studied. The effects of pinene concentration, catalyst particle size, stirring rate, reaction temperature (293–423 K) and hydrogen pressure (0.5–11 bar) on the rate of α- and β-pinene isomerization were investigated. The reaction rate of the α-pinene isomerization has the first order with respect to the α-pinene concentration and 0.5 order with respect to the hydrogen pressure. The thermodynamic parameters of the isomerization (Gibbs energy, reaction enthalpy and reaction entropy) and the equilibrium ratio of pinenes under the conditions studied were determined. The general scheme of the reaction mechanism of α- and β-pinene isomerization over the Pd/C catalyst was proposed.  相似文献   

17.
The catalytic ability of water, formic acid, and sulfuric acid to facilitate the isomerization of the CH(3)O radical to CH(2)OH has been studied. It is shown that the activation energies for isomerization are 30.2, 25.7, 4.2, and 2.3 kcal mol(-1), respectively, when the reaction is carried out in isolation and with water, formic acid, or sulfuric acid as a catalyst. The formation of a doubly hydrogen bonded transition state is central to lowering the activation energy and facilitating the intramolecular hydrogen atom transfer that is required for isomerization. The changes in the rate constant for the CH(3)O-to-CH(2)OH isomerization with acid catalysis have also been calculated at 298 K. The largest enhancement in the rate, by over 12 orders of magnitude, is with sulfuric acid. The results of the present study demonstrate the feasibility of acid catalysis of a gas-phase radical isomerization reaction that would otherwise be forbidden.  相似文献   

18.
The reaction between singlet nitrenium ions XNH(+) (X = F and Cl) and H(2)O has been investigated by high-level of theory ab initio calculations. The geometries of the involved intermediates, transition structures, and dissociation products have been optimized at the MP2(full)/6-31G(d) level of theory, and accurate total energies have been obtained using the Gaussian-3 (G3) procedure. The reaction commences by the exothermic formation of the F-NH-OH(2) (+) and Cl-NH-OH(2) (+) intermediates, which are in turn able to undergo two distinct low-energy reaction paths, namely, the isomerization to the N-protonated isomers of the hydroxylamines F-NH-OH or Cl-NH-OH, and the eventual extrusion of HF or HCl. The competitive or alternative occurrence of these two processes strictly depends on the nature of the substituent X. In the reaction between FNH(+) and H(2)O, the energy gained in the formation of the complex F-NH-OH(2) (+) from the association between FNH(+) and H(2)O, 52.1 kcal mol(-1), is by far larger than the activation barrier for the loss of HF from F-NH-OH(2) (+), computed as 24.9 kcal mol(-1). In addition, the F-NH-OH(2) (+) intermediate requires 33.0 kcal mol(-1) to overcome the barrier for the isomerization to F-NH(2)-OH(+). Therefore, the reaction between FNH(+) and H(2)O is expected to occur practically exclusively by HF elimination with formation of the HN-OH(+) ionic product. On the other hand, for the reaction between ClNH(+) and H(2)O, it is not possible to get a definitive conclusion on the competitive or alternative occurrence of the two reaction paths. In fact, the transition structure involved in the elimination of HCl from Cl-NH-OH(2) (+) is only 3.4 kcal mol(-1) lower in energy than the transition structure for the isomerization of Cl-NH-OH(2) (+) to Cl-NH(2)-OH(+). In addition, the absolute values of the energy barriers of these two processes, 24.2 and 27.6 kcal mol(-1), respectively, are comparable with the energy gained in the formation of the complex Cl-NH-OH(2) (+) from the association between ClNH(+) and H(2)O, 24.0 kcal mol(-).1 Therefore, the ClNH(+) cation is predicted to react with water significantly slower than FNH(+).  相似文献   

19.
1 INTRODUCTION Butene and its isomers are important petroleum raw materials. Isomerization reaction of butene plays a key role in the course of C4 alkylation and its reaction mechanism has captured the attention of chemists all along[1, 2]. As a green so…  相似文献   

20.
A general mechanism to rationalize Ru(IV) -catalyzed isomerization of the C=C bond in O-allylic substrates is proposed. Calculations supporting the proposed mechanism were performed at the MPWB1K/6-311+G(d,p)+SDD level of theory. All experimental observations in different solvents (water and THF) and under different pH conditions (neutral and basic) can be interpreted in terms of the new mechanism. Theoretical analysis of the transformation from precatalyst to catalyst led to structural identification of the active species in different media. The experimentally observed induction period is related to the magnitudes of the energy barriers computed for that process. The theoretical energy profile for the catalytic cycle requires application of relatively high temperatures, as is experimentally observed. Participation of a water molecule in the reaction coordinate is mechanistically essential when the reaction is carried out in aqueous medium. The new mechanistic proposal helped to develop a new experimental procedure for isomerization of allyl ethers to 1-propenyl ethers under neutral aqueous conditions. This process is an unique example of efficient and selective catalytic isomerization of allyl ethers in aqueous medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号