首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The mechanism of size-dependent intracluster hydrogen loss in the cluster ions Mg(+)(H(2)O)(n), which is switched on around n=6, and off around n=14, was studied by ab initio calculations at the MP2/6-31G* and MP2/6-31G** levels for n=1-6. The reaction proceeds by Mg(+)-assisted breaking of an H-O bond in one of the H(2)O molecules. The reaction barrier is dependent on both the cluster size and the solvation structure. As n increases from 1 to 6, there is a dramatic drop in the reaction barrier, from greater than 70 kcal mol(-1) for n=1 to less than 10 kcal mol(-1) for n=6. In the transition structures, the Mg atom is close to the oxidation state of +2, and H(2)O molecules in the first solvation shell are much more effective in stabilizing the transition structures and lowering the reaction barriers than H(2)O molecules in the other solvation shells. While the reaction barrier for trimer core structures with only three H(2)O molecules in the first shell is greater than 24 kcal mol(-1), even for Mg(+)(H(2)O)(6), it drops considerably for clusters with four-six H(2)O molecules in the first shell. The more highly coordinated complexes have comparable or slightly higher energy than the trimer core structures, and the presence of such high coordination number complexes is the underlying kinetic factor for the switching on of the hydrogen-loss reaction around n=6. For clusters with trimer core structures, the hydrogen loss reaction is much easier when it is preceded by an isomerization step that increases the coordination number around Mg(+). Delocalization of the electron on the singly occupied molecular orbital (SOMO) away from the Mg(+) ion is observed for the hexamer core structure, while at the same time this isomer is the most reactive for the hydrogen-loss reaction, with an energy barrier of only 2.7 kcal mol(-1) at the MP2/6-31G** level.  相似文献   

2.
Spurred by the apparent conflict between ab initio predictions and infrared spectroscopic evidence regarding the relative stability of isomers of protonated carbonyl sulfide, key stationary points on the isomerization surface of HOCS(+) have been examined via systematic extrapolations of ab initio energies. Electron correlation has been accounted for using second-order M?ller-Plesset perturbation theory and coupled cluster theory through triple excitations [CCSD, CCSD(T), and CCSDT] in conjunction with the correlation consistent hierarchy of basis sets, cc-pVXZ (X=D,T,Q,5,6). HSCO(+) is predicted to lie lower in energy than HOCS(+) by 4.86 kcal mol(-1), computed using the focal point extrapolation scheme of Allen and co-workers [J. Chem. Phys. 99, 4638 (1993)] with corrections for anharmonic zero-point vibrational energy, core correlation, non-Born-Oppenheimer, and scalar relativistic effects. A transition state has been located, constituting the barrier to isomerization of HSCO(+) to HOCS(+), lying 68.9 kcal mol(-1) higher in energy than HSCO(+). This is well above predicted exothermicity [DeltaH(r) (o)(0 K)=48.1 kcal mol(-1), cc-pVQZ CCSD(T)] for the reaction considered in the experiments (HSCO(+)+H(2)-->OCS+H(3) (+)). Though proton tunneling will lead to a lower effective barrier, this prediction is consistent with the lack of HSCO(+) in electrical discharges in H(2)OCS, since the relative populations of HOCS(+) and HSCO(+) will depend on the experimental details of the protonation route rather than the relative thermodynamic stability of the isomers. Anharmonic vibrational frequencies and vibrationally corrected rotational constants from cc-pVTZ CCSD(T) cubic and quartic force constants are provided, to aid in the spectroscopic observation of the energetically favorable but apparently elusive HSCO(+) isomer.  相似文献   

3.
A direct dynamics simulation at the B3LYP/6-311+G(d,p) level of theory was used to study the F- + CH3OOH reaction dynamics. The simulations are in excellent agreement with a previous experimental study (J. Am. Chem. Soc. 2002, 124, 3196). Two product channels, HF + CH2O + OH- and HF + CH3OO-, are observed. The former dominates and occurs via an ECO2 mechanism in which F- attacks the CH3- group, abstracting a proton. Concertedly, a carbon-oxygen double bond is formed and OH- is eliminated. Somewhat surprisingly this is not the reaction path, predicted by the intrinsic reaction coordinate (IRC), which leads to a deep potential energy minimum for the CH2(OH)2...F- complex followed by dissociation to HF + CH2(OH)O-. None of the direct dynamics trajectories followed this path, which has an energy release of -63 kcal/mol and is considerably more exothermic than the ECO2 path whose energy release is -27 kcal/mol. Other product channels not observed, and which have a lower energy than that for the ECO2 path, are F- + CO + H2 + H2O (-43 kcal/mol), F- + CH2O + H2O (-51 kcal/mol), and F- + CH2(OH)2 (-60 kcal/mol). Formation of the CH3OOH...F- complex, with randomization of its internal energy, is important, and this complex dissociates via the ECO2 mechanism. Trajectories which form HF + CH3OO- are nonstatistical events and, for the 4 ps direct dynamics simulation, are not mediated by the CH3OOH...F- complex. Dissociation of this complex to form HF + CH3OO- may occur on longer time scales.  相似文献   

4.
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.  相似文献   

5.
The structures and vibrational frequencies of UO2(H2O)4(2+) and UO2(H2O)5(2+) have been calculated using density functional theory and are in reasonable agreement with experiment. The energies of various reactions were calculated at the density functional theory (DFT) and MP2 levels; the latter provides the best results. Self-consistent reaction field calculations in the PCM and SCIPCM approximations predicted the free energy of the water exchange reaction, UO2(H2O)4(2+) + H2O <--> UO2(H2O)5(2+). The calculated free energies of reaction are very sensitive to the choice of radii (O and H) and isodensity values in the PCM and SCIPCM models, respectively. Results consistent with the experimental HEXS value of -1.19 +/- 0.42 kcal/mol (within 1-3 kcal/mol) are obtained with small cavities. The structures and vibrational frequencies of the clusters with second solvation shell waters: UO2(H2O)4(H2O)8(2+), UO2(H2O)4(H2O)10(2+), UO2(H2O)4(H2O)11(2+), UO2(H2O)5(H2O)7(2+), and UO2(H2O)5(H2O)10(2+), were calculated and are in better agreement with experiment as compared to reactions involving only UO2(H2O)4(2+) and UO2(H2O)5(2+). The MP2 reaction energies for water exchange gave gas-phase results that agreed with experiment in the range -5.5 to +3.3 kcal/mol. The results were improved by inclusion of a standard PCM model with differences of -1.2 to +2.7 kcal/mol. Rearrangement reactions based on an intramolecular isomerization leading to a redistribution of water in the two shells provide good values in comparison to experiment with values of Delta G(exchange) from -2.2 to -0.5 kcal/mol so the inclusion of a second hydration sphere accounts for most solvation effects. Calculation of the free energy of solvation of the uranyl cation yielded an upper bound to the solvation energy of -410 +/- 5 kcal/mol, consistent with the best experimental value of -421 +/- 15 kcal/mol.  相似文献   

6.
The dynamics of the product channels forming OCF(+)+H(+)+HF and HCF(2) (+)+H(+)+O following the collisions of CF(2) (2+) with H(2)O have been investigated with a new position-sensitive coincidence experiment at a center-of-mass collision energy of 5.6 eV. The results show the formation of OCF(+) occurs via the formation of a doubly charged collision complex [H(2)O-CF(2)](2+) which subsequently undergoes a charge separating dissociation to form H(+) and HOCF(2) (+). The HOCF(2) (+) monocation subsequently fragments to form HF+OCF(+). The lifetimes of the collision complex and the HOCF(2) (+) ion are at least of the order of their rotational period. The kinetic energy release in this reaction indicates that it involves the ground state of CF(2) (2+) and forms the ground electronic states of OCF(+) and HF. The mechanism for forming HCF(2) (+) involves the direct and rapid abstraction of a hydride ion from H(2)O by CF(2) (2+). The resulting OH(+) ion subsequently fragments to H(+)+O, on a time scale at least comparable with its rotational period.  相似文献   

7.
The mechanism of the reactions of W and W(+) with the water molecule have been studied for several lower-lying electronic states of tungsten centers at the CCSD(T)/6-311G(d,p)+SDD and B3LYP/6-31G(d,p)+SDD levels of theory. It is shown that these reactions are essentially multistate processes, during which lower-lying electronic states of the systems cross several times. They start with the formation of initial prereaction M(H(2)O) complexes with M-H(2)O bonding energies of 9.6 and 48.2 kcal/mol for M = W and W(+), followed by insertion of the metal center into an O-H bond with 20.0 and 53.3 kcal/mol barriers for neutral and cationic systems, respectively. The overall process of M + H(2)O --> t-HM(OH) is calculated to be highly exothermic, 48.4 and 48.8 kcal/mol for M = W and W(+). From the HM(OH) intermediate the reaction may proceed via several different channels, among which the stepwise HM(OH) --> HMO + H --> (H)(2)MO and concerted HM(OH) --> (H)(2)MO pathways are more favorable and can compete (energetically) with each other. For the neutral system (M = W), the concerted process is the most favorable, whereas for the charged system (M = W(+)), the stepwise pathway is slightly more favorable. From the energetically most favorable intermediate (H)(2)MO the reactions proceed via H(2)-molecule formation with a 53.1 kcal/mol activation barrier for the neutral system. For the cationic system, H-H formation and dissociation is an almost barrierless process. The overall reaction of W and W(+) with the water molecule leading to H(2) + MO formation is found to be exothermic by 48.2 and 39.8 kcal/mol, respectively. In the gas phase with the collision-less conditions the reactions W((7)S) + H(2)O --> H(2) + WO((3)Sigma(+)), and W(+)((6)D) + H(2)O --> H(2) + WO(+)((4)Sigma(+)) are expected to proceed via a 10.4 and 5.1 kcal/mol overall energy barrier corresponding to the first O-H dissociation at the TS1. On the basis of these PESs, we predict kinetic rate constants for the reactions of W and W(+) with H(2)O.  相似文献   

8.
A hybrid quantum mechanical/molecular mechanical (QM/MM) potential energy function with Hartree-Fock, density functional theory (DFT), and post-HF (RIMP2, MP2, CCSD) capability has been implemented in the CHARMM and Q-Chem software packages. In addition, we have modified CHARMM and Q-Chem to take advantage of the newly introduced replica path and the nudged elastic band methods, which are powerful techniques for studying reaction pathways in a highly parallel (i.e., parallel/parallel) fashion, with each pathway point being distributed to a different node of a large cluster. To test our implementation, a series of systems were studied and comparisons were made to both full QM calculations and previous QM/MM studies and experiments. For instance, the differences between HF, DFT, MP2, and CCSD QM/MM calculations of H2O...H2O, H2O...Na+, and H2O...Cl- complexes have been explored. Furthermore, the recently implemented polarizable Drude water model was used to make comparisons to the popular TIP3P and TIP4P water models for doing QM/MM calculations. We have also computed the energetic profile of the chorismate mutase catalyzed Claisen rearrangement at various QM/MM levels of theory and have compared the results with previous studies. Our best estimate for the activation energy is 8.20 kcal/mol and for the reaction energy is -23.1 kcal/mol, both calculated at the MP2/6-31+G(d)//MP2/6-31+G(d)/C22 level of theory.  相似文献   

9.
Quantum chemical calculations by using density functional theory at the B3LYP level have been carried out to elucidate the reaction course for the addition of ethylene to [OsO2(CH2)2] (1). The calculations predict that the kinetically most favorable reaction proceeds with an activation barrier of 8.1 kcal mol(-1) via [3+2] addition across the O=Os=CH2 moiety. This reaction is -42.4 kcal mol(-1) exothermic. Alternatively, the [3+2] addition to the H2C=Os=CH2 fragment of 1 leads to the most stable addition product 4 (-72.7 kcal mol(-1)), yet this process has a higher activation barrier (13.0 kcal mol(-1)). The [3+2] addition to the O=Os=O fragment yielding 2 is kinetically (27.5 kcal mol(-1)) and thermodynamically (-7.0 kcal mol(-1)) the least favorable [3+2] reaction. The formal [2+2] addition to the Os=O and Os=CH2 double bonds proceeds by initial rearrangement of 1 to the metallaoxirane 1 a. The rearrangement 1-->1 a and the following [2+2] additions have significantly higher activation barriers (>30 kcal mol(-1)) than the [3+2] reactions. Another isomer of 1 is the dioxoosmacyclopropane 1 b, which is 56.2 kcal mol(-1) lower in energy than 1. The activation barrier for the 1-->1 b isomerization is 15.7 kcal mol(-1). The calculations predict that there are no energetically favorable addition reactions of ethylene with 1 b. The isomeric form 1 c containing a peroxo group is too high in energy to be relevant for the reaction course. The accuracy of the B3LYP results is corroborated by high level post-HF CCSD(T) calculations for a subset of species.  相似文献   

10.
Thermochemical parameters of carbonic acid and the stationary points on the neutral hydration pathways of carbon dioxide, CO 2 + nH 2O --> H 2CO 3 + ( n - 1)H 2O, with n = 1, 2, 3, and 4, were calculated using geometries optimized at the MP2/aug-cc-pVTZ level. Coupled-cluster theory (CCSD(T)) energies were extrapolated to the complete basis set limit in most cases and then used to evaluate heats of formation. A high energy barrier of approximately 50 kcal/mol was predicted for the addition of one water molecule to CO 2 ( n = 1). This barrier is lowered in cyclic H-bonded systems of CO 2 with water dimer and water trimer in which preassociation complexes are formed with binding energies of approximately 7 and 15 kcal/mol, respectively. For n = 2, a trimeric six-member cyclic transition state has an energy barrier of approximately 33 (gas phase) and a free energy barrier of approximately 31 (in a continuum solvent model of water at 298 K) kcal/mol, relative to the precomplex. For n = 3, two reactive pathways are possible with the first having all three water molecules involved in hydrogen transfer via an eight-member cycle, and in the second, the third water molecule is not directly involved in the hydrogen transfer but solvates the n = 2 transition state. In the gas phase, the two transition states have comparable energies of approximately 15 kcal/mol relative to separated reactants. The first path is favored over in aqueous solution by approximately 5 kcal/mol in free energy due to the formation of a structure resembling a (HCO 3 (-)/H 3OH 2O (+)) ion pair. Bulk solvation reduces the free energy barrier of the first path by approximately 10 kcal/mol for a free energy barrier of approximately 22 kcal/mol for the (CO 2 + 3H 2O) aq reaction. For n = 4, the transition state, in which a three-water chain takes part in the hydrogen transfer while the fourth water microsolvates the cluster, is energetically more favored than transition states incorporating two or four active water molecules. An energy barrier of approximately 20 (gas phase) and a free energy barrier of approximately 19 (in water) kcal/mol were derived for the CO 2 + 4H 2O reaction, and again formation of an ion pair is important. The calculated results confirm the crucial role of direct participation of three water molecules ( n = 3) in the eight-member cyclic TS for the CO 2 hydration reaction. Carbonic acid and its water complexes are consistently higher in energy (by approximately 6-7 kcal/mol) than the corresponding CO 2 complexes and can undergo more facile water-assisted dehydration processes.  相似文献   

11.
A detailed computational study is performed on the radical-molecule reaction between the vinyl radical (C2H3) and formaldehyde (H2CO), for which only the direct hydrogen abstraction channel has been considered by previous and very recent theoretical studies. At the Gaussian-3//B3LYP/6-31G(d) and CBS-QB3 levels, the direct H-abstraction forming C2H4 + HCO has barriers of 3.9 and 4.7 kcal/mol, respectively. The addition barrier to form H2CCHCH2O has barriers of 2.8 and 2.3 kcal/mol, respectively. Subsequently, there are two highly competitive dissociation pathways for H2CCHCH2O: One is the formation of the direct H-extrusion product H2CCHCHO + H, and the other is the formation of C2H4 + HCO via the intermediate H2CCH2CHO. Surely, the released energy is large enough to drive the secondary dissociation of HCO to H + CO. Because the involved transition states and intermediates of the H2CCHCH2O evolution all lie energetically lower than the entrance addition transition state, the addition-elimination is more competitive than the direct H-transfer for the C2H3 + H2CO reaction, in contrast to previous expectation. The present results can be useful for future experimental investigation on the title reaction.  相似文献   

12.
In the study of the reaction pathways of the ClO + NO2 reaction including reliable structures of the reactants, products, intermediates, and transition states as well as energies the MP2/6-311G(d), B3LYP/6-311G(d), and G2(MP2) methods have been employed. Chlorine nitrate, ClONO2, is formed by N-O association without an entrance barrier and is stabilized by 29.8 kcal mol(-1). It can undergo either a direct 1,3 migration of Cl or OCl rotation to yield an indistinguishable isomer. The corresponding barriers are 45.8 and 7.1 kcal mol(-1), respectively. ClONO2 can further decompose into NO3 + Cl with an endothermicity of 46.4 kcal mol(-1). The overall endothermicity of the NO2 + ClO --> NO3 + Cl reaction is calculated to be 16.6 kcal mol(-1). The formation of cis-perp and trans-perp conformer of chlorine preoxynitrite, ClOONO(cp) and ClOONO(tp), are exothermic by 5.4 and 3.8 kcal mol(-1), respectively. Calculations on the possible reaction pathways for the isomerization of ClOONO to ClONO2 showed that the activation barriers are too high to account for appreciable nitrate formation from peroxynitrite isomerization. All quoted relative energies are related to G2(MP2) calculations.  相似文献   

13.
The structural and energetic properties of the HSS-->SSH transition state are examined using the single and double coupled-cluster method. The energy change for the isomerization reaction is estimated to be 31.7+/-1 kcal mol(-1). The results suggest that the reaction between SH radicals and S atoms should isotopically exchange because the isomerization barrier is significantly less than the S-S bond dissociation energy in the HSS radical.  相似文献   

14.
This letter revisits critical intermediates and transition states of the C2H3 + O2 reaction. To obtain their accurate relative energies, ab initio calculations are performed using sophisticated single and multireference theoretical methods with various basis sets. The energy difference between two crucial transition states, for ring opening in dioxiranylmethyl radical and its isomerization to C2H3OO, is calculated as approximately 2 kcal/mol both at multireference MRCI and at single-reference CCSD(T) levels extrapolated to the complete basis set limit. The deviation from the earlier G2M(RCC,MP2) value (approximately 7 kcal/mol) is caused by a deficiency of the 6-311+G(3df,2p) basis set as compared to correlation-consistent Dunning's basis sets.  相似文献   

15.
Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].  相似文献   

16.
We have investigated the lowest triplet and singlet potential energy surfaces (PESs) for the reaction of Ga(2) dimer with water. Under thermal conditions, we predict formation of the triplet ground state addition complex Ga(2)···OH(2)((3)B(1)) involving Ga···O···Ga bridge interaction. At the coupled cluster CCSD(T)/AE (CCSD(T)/ECP) computational levels, Ga(2)···OH(2)((3)B(1)) is bound by 5.5 (5.7) kcal/mol with respect to the ground state reactants Ga(2)((3)Π(u)) + H(2)O. Identification of the addition complex is in agreement with the experimental evidence from matrix isolation infrared (IR) spectroscopy reported recently by Macrae and Downs. The located minimum energy crossing points (MECPs) between the triplet and singlet energy surfaces on the entrance channel of Ga(2) + H(2)O are not expected to be energetically accessible under the matrix conditions, consistent with the lack of occurrence of Ga(2) insertion into the O-H bond under such conditions. The computed energies and harmonic and anharmonic vibrational frequencies for the triplet and singlet Ga(2)(H)(OH) insertion isomers indicate the singlet double-bridged Ga(μ-H)(μ-OH)Ga isomer to be the most stable and support the experimental IR identification of this species. The energy barrier for elimination of H(2) from the second most stable singlet HGa(μ-OH)Ga insertion isomer found to be 13.9 (12.9) kcal/mol is also consistent with the available experimental data.  相似文献   

17.
The resonantly stabilized radical i-C(4)H(5) (CH(2)CCHCH(2)) is an important intermediate in the combustion of unsaturated hydrocarbons and is thought to be involved in the formation of polycyclic aromatic hydrocarbons through its reaction with acetylene (C(2)H(2)) to form benzene + H. This study uses quantum chemistry and statistical reaction rate theory to investigate the mechanism and kinetics of the i-C(4)H(5) + O(2) reaction as a function of temperature and pressure, and unlike most resonantly stabilized radicals we show that i-C(4)H(5) is consumed relatively rapidly by its reaction with molecular oxygen. O(2) addition occurs at the vinylic and allenic radical sites in i-C(4)H(5), with respective barriers of 0.9 and 4.9 kcal mol(-1). Addition to the allenic radical form produces an allenemethylperoxy radical adduct with only around 20 kcal mol(-1) excess vibrational energy. This adduct can isomerize to the ca. 14 kcal mol(-1) more stable 1,3-divinyl-2-peroxy radical via concerted and stepwise processes, both steps with barriers around 10 kcal mol(-1) below the entrance channel energy. Addition of O(2) to the vinylic radical site in i-C(4)H(5) directly forms the 1,3-divinyl-2-peroxy radical with a small barrier and around 36.8 kcal mol(-1) of excess energy. The 1,3-divinyl-2-peroxy radical isomerizes via ipso addition of the O(2) moiety followed by O atom insertion into the adjacent C-C bond. This process forms an unstable intermediate that ultimately dissociates to give the vinyl radical, formaldehyde, and CO. At higher temperatures formation of vinylacetylene + HO(2), the vinoxyl radical + ketene, and the 1,3-divinyl-2-oxyl radical + O paths have some importance. Because of the adiabatic transition states for O(2) addition, and significant reverse dissociation channels in the peroxy radical adducts, the i-C(4)H(5) + O(2) reaction proceeds to new products with rate constant of around 10(11) cm(3) mol(-1) s(-1) at typical combustion temperatures (1000-2000 K). For fuel-rich flames we show that the reaction of i-C(4)H(5) with O(2) is likely to be faster than that with C(2)H(2), bringing into question the importance of the i-C(4)H(5) + C(2)H(2) reaction in initiating ring formation in sooting flames.  相似文献   

18.
The mechanism for the deamination of guanine with H(2)O, OH(-), H(2)O/OH(-) and for GuaH(+) with H(2)O has been investigated using ab initio calculations. Optimized geometries of the reactants, transition states, intermediates, and products were determined at RHF/6-31G(d), MP2/6-31G(d), B3LYP/6-31G(d), and B3LYP/6-31+G(d) levels of theory. Energies were also determined at G3MP2, G3MP2B3, G4MP2, and CBS-QB3 levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Thermodynamic properties (ΔE, ΔH, and ΔG), activation energies, enthalpies, and Gibbs free energies of activation were also calculated for each reaction investigated. All pathways yield an initial tetrahedral intermediate and an intermediate in the last step that dissociates to products via a 1,3-proton shift. At the G3MP2 level of theory, deamination with OH(-) was found to have an activation energy barrier of 155 kJ mol(-1) compared to 187 kJ mol(-1) for the reaction with H(2)O and 243 kJ mol(-1) for GuaH(+) with H(2)O. The lowest overall activation energy, 144 kJ mol(-1) at the G3MP2 level, was obtained for the deamination of guanine with H(2)O/OH(-). Due to a lack of experimental results for guanine deamination, a comparison is made with those of cytosine, whose deamination reaction parallels that of guanine.  相似文献   

19.
The isomerization reaction from c-OSiH2O to t-OSiHOH, a vital reaction to understand the spontaneous ignition of silane, has been reinvestigated with Gaussian-2 theory and the CASSCF(6,6) method. It has been found that the reaction proceeds through two consecutive steps; i.e., c-OSiH2O undergoes isomerization to yield w-OSiH2O, and then the latter is converted to t-OSiHOH. The G-2 energy of the transition state of the latter process is 4.3 kcal/mol higher than that of the former. However, the G-2 energy of this higher transition state plus H atom is still 4.8 kcal/mol lower than that of the original reactants of SiH3 + O2.  相似文献   

20.
The mechanism of the gas-phase reaction UF 6 + H 2O --> UOF 4 + 2HF is explored using relativistic density functional theory calculations. Initially, H 2O coordinates with UF 6 to form a 1:1 complex UF 6.H 2O. Over an activation energy barrier of about 19 kcal/mol, H 2O transfers a H atom to a nearby ligand F, resulting in UF 5OH + HF. The eliminated HF or another H 2O molecule may form a hydrogen bond with UF 5OH. Starting from UF 5OH, the second HF elimination results in UOF 4. If UF 5OH is in the isolated form, UF 5OH --> UOF 4 + HF takes place over a barrier of 24 kcal/mol. If UF 5OH is hydrogen-bonded with H 2O or HF, the conversion barrier is less than 10 kcal/mol. Once formed, the unstable UOF 4 tends to associate with additional ligands and hydrogen-bonding donors. The calculated binding energies indicate the significance of such interactions, which may have profound impact on further HF eliminating reactions. The IR spectra features can be used to indicate the formation and interaction type of the intermediates and products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号