首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A systematic density functional theory study using periodic models is presented concerning the chemisorption of CO and NO on various sites of RhCu(111) surfaces. The properties of the adsorbed molecules on various mono- and bimetallic sites of these alloy surfaces have been obtained and compared to those corresponding to the pure Rh(111) and Cu(111) surfaces. It is shown that that the interaction of small probe molecules such as CO or NO on RhCu alloys is essentially dominated by the atomic nature of the surface active site with little influence of the rest of the metallic system. Moreover, it is suggested that it is possible to control the adsorption site of these molecules by appropriate choice of the surface composition.  相似文献   

2.
Adsorption and reactions of NO over the clean and CO-preadsorbed Ir(111) and Rh(111) surfaces were investigated using infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Two NO adsorption states, indicative of hollow and atop sites, were present on Ir(111). Only NO adsorbed on hollow sites dissociated to Na and Oa. The dissociated Na desorbed as N2 by recombination of Na and by a disproportionation reaction between atop-NO and Na. Preadsorbed CO inhibited atop-NO, whereas hollow-NO was not affected. Adsorbed CO reacted with Oa and desorbed as CO2. NO adsorbed on the fcc-hollow, atop, and hcp-hollow sites in that order over Rh(111). The hcp-NO was inhibited by preadsorbed atop-CO, and fcc-NO and atop-NO were inhibited by CO preadsorbed on each type of the sites, indicating that NO and CO competitively adsorbed on Rh(111). From the Rh(111) surface-coadsorbed NO and CO, N2 was produced by fcc-NO dissociation, and CO2 was formed by reaction of adsorbed CO with Oa from dissociated fcc-NO.  相似文献   

3.
The CO electro-oxidation reaction was studied on platinum-modified Rh(111) electrodes in 0.5 M H2SO4 using cyclic voltammetry and chronoamperometry. The Pt-Rh(111) electrodes were generated during voltammetric cycles at 50 mV s(-1) in a 30 microM H2PtCl6 and 0.5 M H2SO4 solution. Surfaces generated by n deposition cycles were investigated (Ptn-Rh(111) with n=2, 4, 6, 8, 10, and 16). The blank cyclic voltammograms of these surfaces are characterized by a pronounced sharpening of the hydrogen/(bi)sulfate adsorption/desorption peaks, typical for Rh(111), and the appearance of contributions between 0.1 and 0.4 V, which were ascribed to hydrogen/(bi)sulfate adsorption/desorption on the deposited platinum. At higher potentials, the surface oxidation of Rh(111) is enhanced by the presence of platinum. The structure of the Pt-modified electrodes was investigated by STM imaging. At low Pt coverages (Pt2-Rh(111)), monoatomically high islands are formed, which grow three dimensionally as the number of deposition cycles increases. After eight cycles, the monolayer islands have grown in diameter and range from mono- to multiatomic height. At even higher Pt coverage (Pt16-Rh(111)), the islands grow to particles of approx. 10 nm in diameter, which are 5-6 atoms high. The CO stripping voltammetry on these surfaces is characterized by two peaks: A low-potential, structure-insensitive peak, ascribed to CO reacting at the platinum monolayer islands, whose onset is shifted 150, 250, and 100 mV negatively with respect to pure Rh(111), Pt(111), and polycrystalline Pt, respectively, indicating the enhanced CO electro-oxidation properties of the Pt overlayer system. A peak at higher potentials displays strong structure sensitivity (particle-size effect) and was ascribed to CO reacting on the islands of multiatomic height. Current-time transients recorded on the surface with the highest amount of monolayer islands (Pt4-Rh(111)) also indicate enhanced CO-oxidation kinetics. Comparison of the Pt4-Rh(111) current-time transients recorded at 0.635, 0.675, and 0.750 V versus RHE (reversible hydrogen electrode) with those of pure Rh(111) and Pt(111) shows greatly reduced reaction times. A Cottrellian decay at long times indicates surface-diffusion-limited CO oxidation on the bare Rh(111) surface, while the peak visible at short times is indicative of CO reacting at the monolayer platinum islands. The results presented here show that, as indicated by density functional theory (DFT) calculations, the CO-adlayer oxidation for this system is enhanced compared to both pure Rh and Pt.  相似文献   

4.
Sulfur, a pollutant known to poison fuel‐cell electrodes, generally comes from S‐containing species such as hydrogen sulfide (H2S). The S‐containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O2 into gaseous SO2. According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO2 are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO2 formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO2 desorption at either room temperature or high temperatures.  相似文献   

5.
Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.  相似文献   

6.
We report on bimetallic FeRh clusters with a narrow size-distribution grown on graphene on Ir(111) as a carbon-supported model catalyst to promote low-temperature catalytic CO oxidation. By combining scanning tunneling microscopy with catalytic performance measurements, we reveal that Fe−Rh interfaces are active sites for oxygen activation and CO oxidation, especially at low temperatures. Rh core Fe shell clusters not only provide the active sites for the reaction, but also thermally stabilize surface Fe atoms towards coarsening compared with pure Fe clusters. Alternate isotope-labelled CO/O2 pulse experiments show opposite trends on preferential oxidation (PROX) performance because of surface hydroxyl species formation and competitive adsorption between CO and O2. The present results introduce a general strategy to stabilize metallic clusters and to reveal the reaction mechanisms on bimetallic structures for low-temperature catalytic CO oxidation as well as preferential oxidation.  相似文献   

7.
The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.  相似文献   

8.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

9.
本文应用第一性原理的密度泛函(DFT)方法,使用DMol3计算程序,对NO在Rh(100)和Rh(111)面上的吸附与分解进行量化计算,力图解决NO在Rh(100)和Rh(111)面上的优选吸附位、直接分解的过渡态和活化能等重要问题.  相似文献   

10.
By performing with density functional theory(DFT) method, the detailed adsorption process and the catalytic decarbonylation mechanisms of furfural over Pd(111) and M/Pd(111)(M = Ni, Cu, Ru) surfaces toward furan were clarified. The results of atomic size factor, formation energy and d-band center showed that Ru/Pd(111) surface was the most stable and active. The adsorption energies of furfural on the different surfaces followed the order Ru/Pd(111) Cu/Pd(111) Pd(111) Ni/Pd(111). After analyzing Mulliken atomic charge population and the deformation density, we can find that on Ru/Pd(111) surface, the number of charge transfer was the most and the interaction was the strongest. Therefore, its adsorption energy was the highest. Furthermore, the furfural decarbonylation pathway is more kinetically feasible on bimetallic surface, and the reaction is the most likely to occur on Ru/Pd(111).  相似文献   

11.
The adsorption of carbon monoxide on Rh(111) and on oxygen modified Rh(111) was investigated using thermal desorption spectroscopy, reflection absorption infrared spectroscopy (RAIRS), and density functional theory. The results show that CO adsorbs on Rh(111) in on top sites at low coverages. With increasing coverage hollow sites and bridge sites get occupied according to the RAIRS results. A new vibrational feature at high wave numbers was found in the on top region of the CO stretching frequency. This feature can be explained by a local high density CO structure where two CO molecules are adsorbed in the ( radical3x radical3)R30 degrees structure. The coadsorption of oxygen and carbon monoxide leads to a shift of the CO stretching frequency to higher wave numbers with increasing O to CO ratio. CO adsorption on a (2x1) oxygen layer is possible and RAIRS shows that the CO adsorbs in on top and most likely in bridge sites in this case.  相似文献   

12.
The adsorption of carbon monoxide on single-crystal transition metal surfaces has been the subject of numerous studies, because it has served as a model system for the adsorption of small molecules on transition metal surfaces, and its industrial importance is obvious in such areas as catalytic reaction. The bonding of carbon monoxide to rhodium is of special interest since this metal catalyzes the hydrogenation of CO to produce hydrocarbons in both heterogeneous and homogeneous media, and it …  相似文献   

13.
Experimental results supported by density functional theory calculations show carbonate formation and reaction on atomic oxygen precovered Au(111). Oxygen mixing is observed in temperature-programmed desorption measurements when a Au(111) precovered with 16O is exposed to isotopically labeled CO2 (C18O2). The presence of 16O18O is attributed to surface carbonate formation and decomposition at surface temperatures ranging from 77-400 K and initial oxygen coverages ranging from 0.18-2.1 ML. A reaction probability on the order of 10(-4) and an activation energy of -0.15+/- 0.08 eV are estimated for this reaction.  相似文献   

14.
Formation of volatile nickel carbonyls with CO in catalytic reaction is one of the mechanisms of catalyst deactivation. CO is one of the most popular probe molecules to study the surface properties in model catalysis. Under ultra-high vacuum (UHV) conditions, the problem of nickel carbonyl impurity almost does not exist in the case that a high purity of CO is used directly. While in the near ambient pressure (NAP) range, nickel carbonyl is easily found on the surface by passing through the Ni containing tubes. Here, the NAP techniques such as NAP-X-ray photoelectron spectroscopy and NAP-scanning tunneling microscopy are used to study the adsorption of nickel carbonyl contaminated CO gas on Cu(111) surface in UHV and NAP conditions. By controlling the pressure of contaminated CO, the Ni-Cu bimetallic catalyst can form on Cu(111) surface. Furthermore, we investigate the process of CO adsorption and dissociation on the formed Ni-Cu bi-metal surface, and several high-pressure phases of CO structures are reported. This work contributes to understanding the interaction of nickel carbonyl with Cu(111) at room temperature, and reminds the consideration of CO molecules contaminated by nickel carbonyl especially in the NAP range study.  相似文献   

15.
The dehydrogenation reaction of methanol on a Rh(111) surface, a Rh(111)V subsurface alloy, and on a Rh(111)V islands surface has been studied by thermal-desorption spectroscopy, reflection absorption infrared spectroscopy, and density-functional theory calculations. The full monolayer of methanol forms a structure with a special geometry with methanol rows, where two neighboring molecules have different oxygen-rhodium distances. They are close enough to form a H-bonded bilayer structure, with such a configuration, where every second methanol C-O bond is perpendicular to the surface on both Rh(111) and on the Rh(111)V subsurface alloy. The Rh(111)V subsurface alloy is slightly more reactive than the Rh(111) surface which is due to the changes in the electronic structure of the surface leading to slightly different methanol species on the surface. The Rh(111)V islands surface is the most reactive surface which is due to a new reaction mechanism that involves a methanol species stabilized up to about 245 K, partial opening of the methanol C-O bond, and dissociation of the product carbon monoxide. The latter two reactions also lead to a deactivation of the Rh(111)V islands surface.  相似文献   

16.
We have used in situ polarization-modulation infrared reflection absorption spectroscopy to study the adsorption/dissociation of NO on Rh(111). While these studies have not been conclusive regarding the detailed surface structures formed during adsorption, they have provided important new information on the dissociation of NO on Rh(111). At moderate pressures (< or =10(-6) Torr) and temperatures (<275 K), a transition from 3-fold hollow to atop bonding is apparent. Data indicate that this transition is not due to the migration of the 3-fold hollow NO but rather to the adsorption of gas-phase NO that is directed toward the atop position due to the presence of NO decomposition products, particularly chemisorbed atomic O species at the hollow sites. These results indicate that NO dissociation occurs at temperatures well below the temperature previously reported. Additionally, high pressure (1 Torr) NO exposure at 300 K results in only atop NO, calling into question the surface structures previously proposed at these adsorption conditions consisting of atop and 3-fold hollow sites.  相似文献   

17.
CH(x) (x=1-3) adsorptions on clean and CO precovered Rh(111) surfaces were studied by density functional theory calculations. It is found that CH(x) (x=1-3) radicals prefer threefold hollow sites on Rh(111) surfaces, and the bond strength between CH(x) and Rh(111) follows the order of CH(3)相似文献   

18.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Rh13(9,4)为模拟表面,在6-31G(d,p)与Lanl2dz基组水平上,对甲氧基在Rh(111)表面的四种吸附位置(fcc、hcp、top、bridge)的吸附模型进行了几何优化、能量计算、Mulliken电荷布局分析以及前线轨道的计算。结果表明,当甲氧基通过氧与金属表面相互作用时,在bridge位的吸附能最大,吸附体系最稳定,在top位转移的电子数最多;吸附于Rh(111)面的过程中C—O键被活化,C—O键的振动频率发生红移。  相似文献   

19.
The kinetics of the catalytic reduction of NO by CO on Rh(111) surfaces was investigated by using dynamic Monte Carlo simulations. Our model takes into account recent experimental findings and introduces relevant modifications to the classical reaction scheme, including an alternative pathway to produce N2 through an (N-NO)* intermediate, the formation of atomic nitrogen islands in the adsorbed phase, and the influence of coadsorbed species on the dissociation of NO. All elementary steps are expressed as activated processes with temperature-dependent rates and realistic values dictated by experiments. Calculated steady-state phase diagrams are presented for the NO + CO reaction showing the windows for the conditions under which the reaction is viable. The model predicts variations in both production rates and adsorbate coverages with temperature consistent with experimental data. The effect of varying the individual kinetic parameters and the importance of each step in the reaction scheme were probed.  相似文献   

20.
Adsorption and reactions of NO on clean and CO-precovered Ir(111) were investigated by means of X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HR-EELS), infrared reflection absorption spectroscopy (IRAS), and temperature-programmed desorption (TPD). Two NO adsorption states, indicative of fcc-hollow sites and atop sites, were present on the Ir(111) surface at saturation coverage. NO adsorbed on hollow sites dissociated to Na and Oa at temperatures above 283 K. The dissociated Na desorbed to form N2 by recombination of Na at 574 K and by a disproportionation reaction between atop-NO and Na at 471 K. Preadsorbed CO inhibited the adsorption of NO on atop sites, whereas adsorption on hollow sites was not affected by the coexistence of CO. The adsorbed CO reacted with dissociated Oa and desorbed as CO2 at 574 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号