首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A reflection absorption infrared spectroscopy and density-functional theory investigation of methanol dehydrogenation on Rh(111)V alloy surfaces
Authors:Koch H P  Krenn G  Bako I  Schennach R
Institution:Institute of Solid State Physics, Graz University of Technology, Austria.
Abstract:The dehydrogenation reaction of methanol on a Rh(111) surface, a Rh(111)V subsurface alloy, and on a Rh(111)V islands surface has been studied by thermal-desorption spectroscopy, reflection absorption infrared spectroscopy, and density-functional theory calculations. The full monolayer of methanol forms a structure with a special geometry with methanol rows, where two neighboring molecules have different oxygen-rhodium distances. They are close enough to form a H-bonded bilayer structure, with such a configuration, where every second methanol C-O bond is perpendicular to the surface on both Rh(111) and on the Rh(111)V subsurface alloy. The Rh(111)V subsurface alloy is slightly more reactive than the Rh(111) surface which is due to the changes in the electronic structure of the surface leading to slightly different methanol species on the surface. The Rh(111)V islands surface is the most reactive surface which is due to a new reaction mechanism that involves a methanol species stabilized up to about 245 K, partial opening of the methanol C-O bond, and dissociation of the product carbon monoxide. The latter two reactions also lead to a deactivation of the Rh(111)V islands surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号