首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Natural biopolymer stabilized oil-in-water emulsions were formulated using β-lactoglobulin (β-lg), gum arabic (GA), and β-lg:GA solutions as an alternative to synthetic surfactants. Emulsions using these biopolymers and their complexes were formulated varying the biopolymer total concentration, the protein-to-polysaccharide ratio, and the emulsification protocol. This work showed that whereas β-lg enabled the formulation of emulsions at concentration as low as 0.5 (w/w)%, GA allowed to obtain emulsions at concentrations equal to or higher than 2.5 (w/w)%. In order to improve emulsion stability, β-lg and GA were complexed through strong attractive electrostatic interactions. GA solution had to be added to previously prepared β-lg emulsions in order to obtain stable emulsions. Interfacial tension and interfacial rheological measurements allowed a better understanding of the possible stabilizing mechanism. β-lg and GA both induced a very effective decrease in interfacial tension and showed interfacial elastic behaviour. In the mixed system, β-lg adsorbed at the interface and GA electrostatically bound to it, leading to the formation of a bi-layer stabilized emulsion. However, emulsion stability was not improved compared to β-lg stabilized emulsion, probably due to depletion or bridging flocculation.  相似文献   

2.
This study focused on the preparation and characterization of water-in-oil-in-water (W1/O/W2)-type double emulsions designed by food-grade emulsifiers and stabilizers. The primary objective of this study was to compare different emulsion formulations in terms of droplet size, rheology, and stability and to reduce the amount of polyglycerol poliricinoleate (PGPR). To achieve these goals, PGPR and a PGPR–lecithin blend were utilized in the formation of the primary phase (W1/O), while varying concentrations of guar gum (GG) and gum tragacanth (GT) incorporated in the secondary water phase (W2). Shear thinning behavior was observed for all emulsion formulations. Sauter mean diameters of the emulsions prepared with PGPR as a hydrophobic emulsifier ranged between 30?µm and 75?µm, while those prepared with the PGPR–lecithin blend varied between 25?µm and 85?µm based on the first day’s measurements. In emulsions with the PGPR–lecithin blend, the smallest droplet size was obtained when the GG–GT blend was incorporated in the external aqueous phase. Moreover, GG–GT blends had high consistency coefficients and high apparent viscosity values. It was also observed that PGPR–lecithin containing emulsions were more stable.  相似文献   

3.
A laboratory study was conducted to evaluate the effect of pH on the stability of oil-in-water emulsions stabilized by a commercial splittable surfactant Triton SP-190 by comparison with the results obtained by a common surfactant Triton X-100. The emulsion stability was explored by measuring the volume of oil phase separated and the size of the dispersed droplets. It was found that the addition of inorganic acids did not significantly affect the stability of emulsions stabilized by Triton X-100, but had a profound influence on the stability of emulsions stabilized by Triton SP-190. Moreover, the droplet size of a Triton X-100-stabilized emulsion and its dynamic interfacial activity were insensitive to acids. However, at lower pH the droplet size of the emulsions stabilized by Triton SP-190 was considerably increased. From the dynamic interfacial tension measurements the dynamic interfacial activity of Triton SP-190 at the oil/water interface was found to be strongly inhibited by the addition of acids, resulting in a slower decreasing rate of dynamic interfacial tension. The results demonstrate that the dramatic destabilization of Triton SP-190-stabilized emulsions could be realized by the use of acids, which evidently changed the interfacial properties of the surfactant and resulted in a higher coalescence rate of oil droplets.  相似文献   

4.
Summary One per cent of aluminium hydroxide and bentonite was taken in suspension and their interfacial tension was determined with kerosene oil as dispersed phase byCenco-Du Noüy Interfacial Tensiometer No. 70545 after necessary calibrations and applying the correction factorF (9). Natural colloids (gum acacia, gelatin) and soaps were added into these suspensions in various concentrations and interfacial tension was determined. It was found that the addition of natural colloids, decreases the interfacial tension and the emulsions are finer and more stable. With the increasing quantities of these natural colloids to the suspensions, a further reduction in the interfacial tension is noticed, thereby such a corresponding emulsion formed has a higher interfacial area and stability factor. Similarly copper arsenate, lead arsenate, calcium arsenate and aluminium arsenate were taken and interfacial tension was measured with the addition of various quantities of natural colloids. The results arrived at, further show the lowering of interfacial tension with the conformity of finer emulsions having higher stability factors. Bordeaux mixtures, Burgundy mixtures, and copper phosphate were also taken and similar results were arrived at as shown in table 2 and 3. The above facts reveal a relationship between sedimentation and interfacial tension; low interfacial tension to low sedimentation values represent greater wettabilities of the solids on the addition of colloidal solutions. In this way was tested quantitatively the theory that the stability of an emulsion depends on relative interfacial tension and, as an approximate correlary, on the dispersibilities or wettabilities of the emulsifier in the two phases because whatever different causes may be operative in the stabilization of different emulsions, the one fundamental underlying principle applicable to all cases is the wetting of solid agent by the two liquids. With 3 tables  相似文献   

5.
The influence of water pH and cationic surfactant content on the interfacial properties and stability of an Algerian bitumen aqueous emulsion were investigated. While the stability was quantified by both the test-bottle method and size distribution measurements, the interfacial properties of the water-bitumen interface were assessed using interfacial tension measurements. Optical microscopy was also used to visualise the dispersed water droplets in the oil phase. The results showed that addition of the cationic surfactant at a concentration of 25 mmol L?1 in acidic water (pH 2) improves the bitumen emulsion stability and effectively decreases the interfacial tension.  相似文献   

6.
Hydrocolloids are water-soluble biopolymers consisting of high molecular weight polysaccharides. For generations, these biopolymers were also termed gums or stabilizers imparting viscosity, gelification and long-term stability to food systems.

Some hydrocolloids were also considered as emulsifying agents, since they help to form and stabilize oil-in-water emulsions. Only in the last two decades questions have been raised as to the mode of their action in low viscosity and low concentrations dispersed systems consisting of oil and water.

Gum Arabic is the only gum in use in dilute emulsion systems which was proved to be a good emulsifier - adsorbing onto oil-water interfaces and imparting steric stabilization.

However, other gums have been known to reduce surface and interfacial tensions, to adsorb onto solid surfaces and to improve stability of oil-in-water emulsions. Only recently attention has been paid to the structure-surface activity relationship between the gums and their emulsification abilities. Galactomannans, xanthans, pectins, etc. are being considered as emulsifying agents, and correlation between their internal composition and activity are being studied.

This review will discuss the drawbacks and prospects of hydrocolloids as food emulsifying agents, as native hydrocolloids and as modified (chemically, enzymatically) macrobiopolymeric amphiphiles.  相似文献   

7.
This article describes interfacial properties of acidic asphaltenes and their ability to stabilize emulsions. Asphaltenes extracted from crude oil were esterified with methanol to prevent ionization of carboxylic acid at high pH. Interfacial tension (IFT) between water and asphaltenes in xylene was significantly lower in basic than in acidic and neutral media, while the elasticity of the corresponding films was higher. These results are consistent with much more stable asphaltene-based emulsions in basic medium. For ester-asphaltenes, the IFT only showed a slight decrease under basic conditions and the interfacial elasticity was close to that in acidic solutions and only slightly higher than for neutral medium. While the asphaltene-stabilized emulsions showed a strong increase in stability in basic medium, this increase was much less for ester-asphaltene emulsions. Salt influenced the interfacial properties and generally reduced emulsion stability.  相似文献   

8.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

9.
The influence of oil type (n-hexadecane, 1-decanol, n-decane), droplet composition (hexadecane:decanol), and emulsifier type (Tween 20, gum arabic) on droplet growth in oil-in-water emulsions was studied. Droplet size distributions of emulsions were measured over time (0-120 h) by laser diffraction and ultrasonic spectroscopy. Emulsions containing oil molecules of low polarity and low water solubility (hexadecane) were stable to droplet growth, irrespective of the emulsifier used to stabilize the droplets. Emulsions containing oil molecules of low polarity and relatively high water solubility (decane) were stable to coalescence, but unstable to Ostwald ripening, irrespective of emulsifier. Droplet growth in emulsions containing oil molecules of relatively high polarity and high water solubility (decanol) depended on emulsifier type. Decanol droplets stabilized by Tween 20 were stable to droplet growth in concentrated emulsions but unstable when the emulsions were diluted. Decanol droplets stabilized by gum arabic exhibited rapid and extensive droplet growth, probably due to a combination of Ostwald ripening and coalescence. We proposed that coalescence was caused by the relatively low interfacial tension at the decanol-water boundary, which meant that the gum arabic did not absorb strongly to the droplet surfaces and therefore did not prevent the droplets from coming into close proximity.  相似文献   

10.
The water-in-oil high internal phase emulsions were the subject of the study. The emulsions consisted of a super-cooled aqueous solution of inorganic salt as a dispersed phase and industrial grade oil as a continuous phase. The influence of the industrial grade oil type on a water-in-oil high internal phase emulsion stability was investigated. The stability of emulsions was considered in terms of the crystallization of the dispersed phase droplets (that are super-cooled aqueous salt solution) during ageing. The oils were divided into groups: one that highlighted the effect of oil/aqueous phase interfacial tension and another that investigated the effect of oil viscosity on the emulsion rheological properties and shelf-life. For a given set of experimental conditions the influence of oil viscosity for the emulsion stability as well as the oil/aqueous interfacial tension plays an important role. Within the frames of our experiment it was found that there are oil types characterized by optimal parameters: oil/aqueous phase interfacial tension being in the region of 19–24 mN/m and viscosity close to 3 mPa s; such oils produced the most stable high internal phase emulsions. It was assumed that the oil with optimal parameters kept the critical micelle concentration and surfactant diffusion rate at optimal levels allowing the formation of a strong emulsifier layer at the interface and at the same time creating enough emulsifier micelles in the inter-droplet layer to prevent the droplet crystallization.  相似文献   

11.
This study evaluated how variations in polyglycerol polyricinoleate (PGPR) concentration and ethanol dispersed phase content affect the stability of ethanol-in-oil (E/O) emulsions. Results indicate that the stable 10?wt% E/O emulsions can be produced using 2?wt% PGPR. Increasing the ethanol dispersed phased content at constant PGPR concentration caused instability in emulsion. These emulsions remained stable to droplet flocculation and coalescence in the presence of Centella asiatica ethanol extract. PGPR does not greatly decrease the interfacial tension of the ethanol–oil interface. However, it adsorbed at the interface and stabilized the ethanol droplets in the emulsion via steric mechanism.  相似文献   

12.
ABSTRACT

Miorocrystalline cellulose stabilized emulsions (o/w) were evaluated by means of brightfield and polarized light microscopy, freeze-etch electron microscopy, droplet size analyses and rheologic measurements. These studies indicated that miorocrystalline cellulose (Avicel RC591 ) forms a network around emulsified oil droplets. This structure provides a mechanical barrier at the o/w interface which stabilizes the emulsion without the necessity for decreasing interfacial tension, as in conventional surfactant-stabilized emulsions. Rheologic studies indicated that emulsions containing Avicel RC591 had a considerable degree of thlxotropy which contributed to their stability. When Tween 80 was incorporated in this system, oil droplets coalesced indicating that the stability of the emulsion was affected adversely.  相似文献   

13.
基于两相分离的乳状液稳定模型,研究了三元复合驱模拟原油乳状液稳定动力学特性;通过液膜强度和油水界面张力探讨了碱/表面活性剂/聚合物对模拟原油乳状液稳定动力学特性的影响机理。 结果表明,乳状液稳定模型可以很好的评价乳状液的稳定性,并得到乳状液的稳定动力学特性;碱浓度小于900 mg/L有利于乳状液的稳定,碱浓度大于900 mg/L不利于乳状液的稳定;表面活性剂和聚合物浓度的增加使得形成的模拟原油乳状液更加稳定;模拟原油乳状液的稳定作用主要是通过碱、表面活性剂降低油水界面张力并增加油水界面膜强度,聚合物通过提高界面膜强度实现的,三者存在协同效应。  相似文献   

14.
An oil-in-water emulsion (5 wt% corn oil, 0.5 wt% beta-lactoglobulin (beta-Lg), 0.1 wt% iota-carrageenan, 5 mM phosphate buffer, pH 6.0) containing anionic droplets stabilized by interfacial membranes comprising of beta-lactoglobulin and iota-carrageenan was produced using a two-stage process. A primary emulsion containing anionic beta-Lg coated droplets was prepared by homogenizing oil and emulsifier solution together using a high-pressure valve homogenizer. A secondary emulsion containing beta-Lg-iota-carrageenan coated droplets was formed by mixing the primary emulsion with an aqueous iota-carrageenan solution. The stability of primary and secondary emulsions to sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) were analyzed using zeta-potential, particle size and creaming stability measurements. The secondary emulsion had better stability to droplet aggregation than the primary emulsion at NaCl 相似文献   

15.
Many protein/polysaccharide mixtures phase separate when the concentrations ofthese biopolymers are sufficiently high. One of the properties involved in this phenomenon is the interfacial tension. Here we present measurements of the interfacial tension of two different protein/polysaccharide mixtures. The protein gelatin was mixed with either dextran or gum arabic, all used in a variety of food products. The phase diagrams were constructed using optical rotation. Although both polysaccharides have the same molecular weight, the phase diagrams differed. The interfacial tension of samples, varying in the distance from the critical point, was determined using the spinning drop method. The interfacial tension was found to be in the range of 1-15 microN/m. For both systems, the scaling behavior of the interfacial tension was investigated. The investigated gelatin/dextran system gave critical exponents of 2.5+/-0.1 and 1.4+/-0.1, in reasonable agreement with the mean-field values 3 and 1.5, respectively. The gelatin/gum arabic system did not show critical behavior. For this system, the interfacial tension shows a logarithmic dependence on the distribution of the gelatin and the gum arabic molecules in the separated phases.  相似文献   

16.
Blends of high‐density polyethylene (HDPE) and polyamide‐6 (PA6) were produced by ultrasonic extrusion. Ultrasonic irradiation leads to degradation of polymers and in situ compatibilization of blends as confirmed by variations in linear viscoelastic properties. The results showed that the effect of ultrasonic irradiation on dynamic rheological properties depends on the composition and experimental temperature. At the same time, the relationship between storage modulus and loss modulus indicated the effect of ultrasonic irradiation on compatibility of HDPE/PA6 blends. Based on an emulsion model, the interfacial tension between the matrix and the dispersed phase was predicted. The data obtained showed that ultrasonic irradiation can decrease the interfacial tension and then enhance the compatibility of HDPE/PA6 blends. This finding was consistent with our previous work. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1260–1269, 2005  相似文献   

17.
原油乳状液稳定性和破乳研究进展   总被引:14,自引:0,他引:14  
本文从控制乳状液稳定性的一些因素-界面膜、界面张力、双电层、空间位阻、固体粒子、液晶、油相溶解度、连续相粘度等方面综述了有关乳状液稳定性的一些研究进展。对国内外有关原油乳状液的破乳研究也做了综述。同时,介绍了应用于乳状液稳定性研究的新的实验技术和仪器。  相似文献   

18.
An oil-soluble hexadecyl pyrene (HDP) probe is used to monitor coalescence of hexadecane oil-in-water emulsions, during emulsification, in stirred systems and in a high-pressure homogenizer (microfluidizer), when small molecule surfactants are used as emulsifiers. The effect of sodium dodecyl sulfate concentration and salt concentration on the amount of coalescence and final drop size is studied. The behavior of oil-soluble surfactants and mixtures of oil-soluble and water-soluble surfactants on emulsification performance is also discussed. For high-pressure homogenizers, the drop sizes obtained are found to depend mostly on the ability of surfactants to stabilize the drops against coalescence, rather than their ability to reduce the interfacial tension. Increasing oil phase fractions increase the coalescence rate, because of the increase in collision frequency, which, in turn, impacts the drop size of the homogenized emulsion.  相似文献   

19.
This review explores three (A, B, C) polyoxyalkylated diethylenetriamine (DETA) polymeric surfactants belonging to the group of star-like polymers. They have a similar structure, differing only in the number of polymeric branches (4, 6 and 9 in the mentioned order). The differences in these surfactants' ability to stabilize foam, o/w/o and w/o/w emulsion and wetting films are evaluated by a number of methods summarized in Section 2. Results from the studies indicate that differences in polymeric surfactants' molecular structure affect the properties exhibited at air/water, oil/water and water/solid interfaces, such as the value of surface tension, interfacial tension, critical micelle concentration, degree of hydrophobicity of solid surface, etc. Foam, emulsion and wetting films stabilized by such surfactants also show different behavior regarding some specific parameters, such as critical electrolyte concentration, surfactant concentration for obtaining a stable film, film thickness value, etc. These observations give reasons to believe that model studies can support a comprehensive understanding of how the change in polymeric surfactant structure can impact thin liquid films properties. This may enable a targeted design of the macromolecular architecture depending on the polymeric surfactants application purpose.  相似文献   

20.
An experimental study was conducted to evaluate the effectiveness of the various components of Athabasca bitumen in stabilizing water-in-diluted-bitumen emulsions. The solvent used to dilute the very viscous bitumen was a mixture of 50:50 by volume of hexane and toluene. The various bitumen components studied were asphaltenes, deasphalted bitumen, and fine solids. It was found that asphaltenes and fine solids were the main stabilizers of the water-in-diluted-bitumen emulsions. Individually, the two components can stabilize water-in-diluted-bitumen emulsions. However, when both are present the capacity of the diluted bitumen to stabilize water emulsions is greatest. Emulsion stabilization tests indicated that whole bitumen had less capacity to stabilize water emulsions than asphaltenes and solids. This would indicate that the presence of the small molecules within the whole bitumen tends to lower the emulsion stability. Deasphalted bitumen acts as a poor emulsion stabilizer. Although deasphalted bitumen led to the least emulsion stabilization capacity, interfacial tension measurements showed that diluted deasphalted bitumen gave a greater decrease in the interfacial tension of water with diluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号