首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
The thermal properties of dehydrochlorinated PVC (DHPVC) were evaluated. From thermogravimetric analysis (TGA) and differential thermal analysis (DTA), a larger decrease in thermal stability of dehydrochlorinated PVC than of PVC was observed. Thermal stability of DHPVC increased continuously with an increase in dehydrochlorination temperature and dilution of the reaction solution during dehydrochlorination. However, with an increase in dehydrochlorination time, an increase in thermal stability after an initial drop was obtained. The highly cross-linked product separated from the reaction solution at higher dehydrochlorination temperatures showed a lower thermal stability than that of corresponding soluble DHPVC. The stress-strain behavior of dehydrochlorinated PVC samples was also studied.  相似文献   

2.
季铵盐固相催化使聚氯乙烯脱HCl   总被引:4,自引:0,他引:4  
 通过将季铵盐与聚氯乙烯(PVC)混溶成膜,使其在固相脱HCl,研究了催化剂对PVC脱HCl反应速度和产物结构的影响以及固相反应与温度、时间的关系.发现在催化性能上下基铵盐比乙基铵盐好得多,根据实验结果提出了季铵盐通过分解成叔胺实现催化的机理.  相似文献   

3.
通过将季铵盐与聚氯乙烯(PVC)混溶成膜,使其在固相脱HCl,研究了催化剂对PVC脱HCl反应速度和产物结构的影响以及固相反应与温度、时间的关系.发现在催化性能上下基铵盐比乙基铵盐好得多,根据实验结果提出了季铵盐通过分解成叔胺实现催化的机理.  相似文献   

4.
In order to examine effect of the carbonyl group in carbon monoxide–vinyl chloride copolymer, poly(CO–VC), photoirradiation with a high-pressure mercury lamp on the copolymer was carried out. Poly(CO–VC) had a rate of dehydrochlorination three times that of PVC, and the reaction involved a decrease in chlorine content. Also there was a marked change in the ultraviolet spectra of the photoirradiated films. However, no pronounced change of molecular weight was observed, but a change in Rf in TLC was observed clearly. These facts confirmed that photoirradiation of poly(CO–VC) produced a structural change by dehydrochlorination without serious decrease of molecular weight. In addition, photodehydrochlorination of the copolymer or PVC film was followed kinetically, and after ozonolysis of the dehydrochlorinated polymers, the number-average molecular weights were measured. From the results of degree of dehydrochlorination and molecular weight, the number average of conjugated double bonds or carbonyl groups was estimated. A mechanism for dehydrochlorination process by photo-irradiation is suggested.  相似文献   

5.
A method is presented for preparing Merrifield-like resin beads starting from poly (vinyl chloride) (PVC) in spherical bead form. In this method, first, PVC is partially dehydrochlorinated in boiling methanolic KOH (20%) solution to create minute amounts of allylic carbon centers. Those centers trigger the un-zipping process and make further dehydrochlorination possible at relatively low temperatures (180-200 °C), while retaining the bead shapes. Acid catalyzed reaction of the dehydrochlorinated PVC particles with benzyl chloride at 180 °C yields crosslinked spherical bead polymers possessing chloromethyl benzene functions as high as 3.4 mmol g−1. Experiments showed that, high yields of benzyl chloride insertions can be attained by using PVC samples with 40-50% of unsaturations. In the study transformation yields in each step were followed by conventional analytical methods and IR spectrometry. It was also demonstrated that modification of the chloromethyl groups either with KCN or sodium acetate proceeds with nearly quantitative yields, as in the case for chloromethylated styrene-divinyl benzene resins.  相似文献   

6.
Abstract

The chemical dehydrochlorination of polyvinyl chloride was studied in solution in tetrahydrofuran. The dehydrochlorinated products were characterized by their chlorine contents and by UV/visible spectroscopy. The absorption spectra of dehydrochlorinated PVC consist of a series of absorption maxima between 200 and 600 nm due to the formation of conjugated polyenic sequences. In this article we describe a new method for polyenic sequences evaluation based on deconvolution of the experimental spectrum. A comparison with the former technique usually employed is presented.  相似文献   

7.
The reaction of poly(vinyl chloride) powder with aqueous sodium hydroxide solution in the presence of quaternary ammonium or phosphonium halides yielded dehydrochlorinated products of conjugated polyene structure. The reaction was discussed in terms of a phase transfer catalytic mechanism between aqueous and polymer phases. Among the catalysts used tetrabutylammonium bromide was the best. To obtain the optimum conditions the effects of reaction temperature, the concentration of NaOH and the catalyst, and the molecular weight of poly(vinyl chloride) were investigated. Treatment of PVC films and solutions in tetrahydrofuran with aqueous NaOH solutions under two-phase conditions also produced dehydrochlorinated films and powders.  相似文献   

8.

Two kinds of activated carbon spheres (ACS)-supported metal oxides, ACS-supported Fe3O4 (ACS@Fe3O4) and ACS-supported NiO (ACS@NiO), were synthesized and used as flame retardants for reducing smoke release volume and fire hazard in flexible poly(vinyl chloride) (PVC). Scanning electron microscope measurement, Fourier transform infrared spectrum, X-ray diffraction and thermogravimetric analysis (TGA) were utilized to investigate the morphology, chemical structure and stability of the flame retardants. The TGA coupled with mass spectrometry (TG-MS) results of PVC composites showed that ACS could retard the heat and oxygen transfer between gas and polymers. Under the same condition, ACS@Fe3O4 could promote the dehydrochlorination reaction of PVC in lower temperature, while the ACS@NiO could make the dehydrochlorination reaction faster. Therefore, both ACS@Fe3O4 and ACS@NiO effectively promoted the cross-linked carbonization reaction of PVC and then generated a large amount of stable char residues. Limiting oxygen index (LOI) and cone calorimeter test results of the PVC composites showed that ACS@Fe3O4 and ACS@NiO were much more efficient than ACS alone to improve the flame retardancy and smoke suppression of PVC. The incorporation of ACS@Fe3O4 and ACS@NiO increased the LOI from 24.9 to 27.4% and 26.9% and reduced the peak of heat release rate by 47.2 and 30.8%, respectively, compared with pure PVC.

  相似文献   

9.
Thermal and thermo-oxidative degradation of poly(vinyl chloride)s (PVCs) containing increased concentrations of allylic chlorines, PVC(A)s, prepared by controlled chemical dehydrochlorination with potassium-t-butoxide (t-BuOK) have been studied. The introduction of small amounts of internal allylic chlorines into PVC significantly decreases the thermal and thermo-oxidative stability of the resin. A linear relationship exists between the initial rates (VHCl)0 of thermal and thermooxidative dehydrochlorination of solid PVC(A)s and the concentration S of internal allylic chlorines. Both the slope and the intercept of the thermo-oxidative (VHCl)0 vs. S plot are higher in oxygen than those obtained in nitrogen at the same temperature; this finding is attributed to fast oxidation of polyenes, and to peroxy radicals formed during polyene oxidation, which initiate subsequent HCl loss by attacking normal repeat units in PVC. The extent of HCl loss as a function of time during thermal degradation of PVC(A)s in intert solvent shows a rapid initial phase followed by a slower stationary phase. The first phase is due to dehydrochlorination involving the labile chlorines, while the stationary phase indicates random initiation of HCl loss at normal? CH2? CHCl? repeat units. Initial rates of HCl loss increase with S, while the rates of HCl loss during the stationary phase are independent of S. The rate constant of initiation of HCl loss at internal allylic chlorines is almost four orders of magnitude higher than that of random initiation; however, the former is still orders of magnitude lower than that of chain propagation. Quantitative analysis of UV-visible spectra of PVC(A)s degraded in solution suggests geometric polyene distribution. The average length of polyenes decreases as the extent of HCl loss increases and reaches a constant value of ca. 3 at ca. 1% HCl loss for all the investigated PVC(A) samples.  相似文献   

10.
The degradation of two chlorinated polyethylene compounds CPE 25 (45% chlorine) and CPE 16 (36% chlorine) was studied by following their rates of dehydrochlorination at two temperatures, 150°C and 180°C in pure nitrogen and pure oxygen atmospheres. Studies on the powdered polymers showed that the dehydrochlorination rate of CPE 25 is about fourteen times faster than that of CPE 16 in nitrogen atmospheres and only three to four times faster in oxygen. The molded polymers gave a lower rate of dehydrochlorination than when in the powdered form. This effect is attributed to diffusion factors. The antimony oxide brought about an induction period in the dehydrochlorination reaction during which only a small amount of HCl is evolved, followed by a very fast rate of dehydrochlorination both in oxygen and nitrogen atmospheres. The duration of the induction period increases with increase in the Sb2O3 concentration, but is followed by an accelerated HCl loss which is faster when Sb2O3 concentration is higher. This work provides supporting evidence that SbCl3 was formed and lost during degradation. Mechanisms of dehydrochlorination are suggested for the reaction in the case of pure chlorinated polyethylene and for the polymer containing antimony oxide.  相似文献   

11.
聚氯乙烯-丙烯酸丁酯接枝共聚物的结构表征   总被引:4,自引:0,他引:4  
以通用聚氯乙烯(PVC)和脱氯化氢PVC树脂为基体,采用悬浮溶胀接枝共聚法合成聚氯乙烯-丙烯酸丁酯接枝共聚物,对脱氯化氢PVC和接枝共聚物的结构进行了表征.结果表明,以碱液为介质加热PVC能脱除少量氯化氢,得到以链节数为2,3,4的共轭双键为主的不饱和结构,而树脂的分子量变化不大;在相同接枝反应条件下,采用脱氯化氢PVC与丙烯酸丁酯接枝共聚可以提高接枝率和接枝效率;PVC接枝共聚物的特性粘度随接枝率增加而增加,其重均分子量和分子量分布指数均大于接枝所用的PVC树脂.  相似文献   

12.
Vinyl chloride was polymerized at 59–92% of saturation pressure in a water-suspended system at 45–65°C with an emulsion poly(vinyl chloride) (PVC) latex as a seed. A water-soluble initiator was used in various concentrations. The monomer was continuously charged as vapor from a storage vessel kept at lower temperature. Characterization included determination of molecular-weight distribution and degree of long-chain branching by gel permeation chromatography (GPC) and viscometry, thermal dehydrochlorination, and microscopy. The polymerization rate decreases with decreasing pressure but is reasonable even at the lowest pressure. The molecular weight decreases with decreasing pressure and increasing initiator concentration and also with increasing polymerization temperature, if the initiator concentrations are chosen to give a constant initiator radical concentration. The degree of long-chain branching increases with increasing initiator concentration and decreasing monomer pressure but is unaffected by the polymerization temperature, if the initiator radical concentration is kept constant. The thermal stability decreases with decreasing M n, while the degree of long-chain branching has only a minor influence. The most important factor in the system influencing the molecular parameter is the monomer accessibility.  相似文献   

13.
Films of polyvinylidene chloride (PVDC) were heterogeneously dehydrochlorinated by reacting them with KF-crown and KOH-crown complexes dissolved in benzene. Solutions were in contact with an excess of unhydrous salts. This three-phase reaction was very fast at 80°C and the removal of one chlorine atom per monomer unit was completed within 1 h. Further dehydrochlorination leads to triple-bond formation and to aromatization of the system due to the intramolecular 1,6 elimination. The former reaction is dominant when KOH-crown is used as the dehydrochlorinating agent and the latter is dominant in KF-crown/CaO systems. The apparent energy of activation of the initial dehydrochlorination process is estimated to be 6.7 kcal./mol.  相似文献   

14.
The mechanism of the light-induced degradation of solid poly(vinyl chloride) (PVC) has been investigated, and an overall reaction scheme has been developed, based on values of the quantum yields for the primary photoproducts. Only a very small fraction (0.2%) of the excited polyenes induces the degradation of PVC, primarily by photocleavage of the allylic CCl bond. The high instability of β-chloroalkyl radicals is responsible for the chain dehydrochlorination that leads to formation of polyenes. In the absence of O2, chain scissions and crosslinking are postulated to originate mainly from α-chloroalkyl radicals through β-cleavage of CC bonds and radical coupling, respectively. In the presence of O2, the chain dehydrochlorination still proceeds, together with an oxidative chain process which yields, via peroxy and alkoxy radicals, hydroperoxides, ketones and peroxide crosslinks. Cleavage of the polymer backbone results most probably from the decomposition of tertiary alkoxy radicals by a carbon-carbon β-scission process.  相似文献   

15.
The thermo non-oxidative degradation of PVC and the effects of alkaline earth metal (Be, Mg, Ca, Ba) stearates were studied by thermogravimetry in the temperature range 150 to 500°C. The alkaline earth metal stearates were observed effectively reduce the dehydrochlorination of PVC. The synergistic effects of combinations of these salts with lead stearate were also studied and are discussed. Kinetic parameters such as the activation energy, order of reaction and Arrhenius factor were calculated by the Coats and Horowitz methods. The results showed that these metal stearates increase the activation energy required for the dehydrochlorination of PVC.  相似文献   

16.
Peroxide induced crosslinking and degradation of polyvinyl chloride (PVC) were experimentally investigated using an on-line electron spin resonance (ESR) spectroscopy technique. The reaction variables included temperature, peroxide type and concentration. A single line ESR spectrum was observed with its peak-to-peak width decreasing during the reaction. The mechanism involved in the reaction was elucidated based on the radical information. The radical concentration versus reaction time profile exhibited two distinct regions: the chemically initiated reaction continued by the thermal initiation. The addition of peroxide induced and significantly enhanced the thermal initiated crosslinking and degradation. The radical concentration data coupled with the extent of dehydrochlorination gave an estimate of the rate constant of polyene propagation. A significant decrease of the rate constant was observed during the reaction. The gel content and swelling ratio were also measured to provide additional information to the reaction process. The initial gelation rate increased with the increase of temperature and/or peroxide concentration. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 851–860, 1998  相似文献   

17.
The course of the chlorination reaction of cis-1,4-polybutadiene is dependent on the choice of solvent. When methylene chloride is used, a pure addition reaction of chlorine leads to a polymer with the structure of head-to-head, tail-to-tail PVC. The thermal stability of the head-to-head PVC polymer has been studied by thermal volatilization analysis, thermogravimetry, and evolved gas analysis for hydrogen chloride, and the changes in the ultraviolet (UV) spectrum of the polymer during degradation have been investigated. The head-to-head polymer has a lower threshold temperature of degradation than normal PVC, but reaches its maximum rate of degradation at a higher temperature for powder samples of the polymer under programmed heating conditions. Blends of head-to-head PVC with poly(methyl methacrylate) have also been degraded, and the presence of the head-to-head polymers, like that of normal PVC, results in depolymerization of the PMMA as soon as the dehydrochlorination reaction commences. The mechanism of degradation of head-to-head PVC is discussed.  相似文献   

18.
Thermal degradation of PVC treated with alkylaluminum compounds has been studied. Four PVC samples of different molecular weights have been treated with Me3Al, and Et3A1, and the dehydrochlorination rates of the polymers were determined at 190 and 220°C under a nitrogen atmosphere. The alkylaluminum-treated low molecular weight samples show marked increase in thermal stability, i. e., slower rate of dehydrochlorination right from the beginning of degradation, whereas with the higher molecular weight samples stabilization becomes pronounced only after a few percent of dehydrochlorination. The color of R3Al-treated samples was much lighter (yellowish) than those of controls (dark brown) at 1% HCl loss. The average polyene sequence lengths formed during the early stages of dehydrochlorination are found to be much shorter with RsAl-treated PVC than with virgin samples. It appears as though polyene sequences which arose by zipping- initiation from allylic and/or tertiary chlorine sites are longer than those which form by random initiation along the chain. The autocatalytic (i. e., HC1-catalyzed) dehydrochlorination observed with virgin PVC disappears after treatment with R3A1. The HCl-catalyzed dehydrochlorination is minimized when thin films are used instead of powdery samples, which may be due to higher rates of HC1 diffusion through thin films. Autocatalysis of dehydrochlorination is affected by the concentrations of double bonds and HCl and the length of polyene sequences. Interaction between polyenes and HC1 by hydrogen transfer may lead to the re-initiation of unzipping, thus lengthening the polyene sequences.  相似文献   

19.
The dehydrochlorination of PVC in the presence of NaOH was investigated in different diols. Diethylene glycol (DEG), triethylene glycol (TEG), and propylene glycol (PG) were found to be effective in accelerating the dechlorination of PVC. The dehydrochlorination was promoted in the order TEG > DEG > PG, which was in agreement with the compatibility between PET and the diol. Compatibility resulted in an improved penetration of the PVC particle by the solvent, leading to the acceleration of the dehydrochlorination. The dehydrochlorination of PVC in NaOH/diol followed first-order kinetics, confirming the progress of the reaction under chemical reaction control. The apparent activation energies were 82 kJ mol−1, 109 kJ mol−1, and 151 kJ mol−1 for TEG, DEG, and PG, respectively. The lower the activation energy became the faster the dehydrochlorination of PVC proceeded.  相似文献   

20.
氯化天然橡胶的等速升温热降解动力学   总被引:7,自引:0,他引:7  
天然胶乳;氯化天然橡胶的等速升温热降解动力学  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号