首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正> 二乙烯基苯(DVB)用于树脂的合成时,并非所有的乙烯基都参与交联反应,共聚物中总存在一些悬挂双键。用红外及拉曼光谱对聚合过程中DVB悬挂双键含量变化的动力学研究已有报道。作者用Nicolet 170 SX:付里叶变换红外光谱仪(FT-IR),以积分强度法测定及研究了大孔型丙烯腈-苯乙烯-二乙烯基苯共聚物(大孔AS树脂)中悬  相似文献   

2.
In this work, the acrylonitrile (AN) – divinylbenzene (DVB) –methylacrylate (MA) resin was synthesized via suspension polymerization in the presence of toluene as diluent, and benzoylperoxide (BPO) as initiator. The effect of MA, toluene and alkaline treatment on the exchange capacity of the resin were investigated. The results showed that the anion exchange capacity decreased with an increase in the amount of MA, while alkaline treatment had no significant effect. Also, the cation exchange capacity increased with an increase in the amount of hydrophilic agent and reached a maximum point. The sorption equilibrium was achieved relatively fast within 40 mins, and the resin exhibited affinity towards lead (II), copper (II) and in particular uranium (VI). The adsorption of uranium was directly depended up on the pH value. Furthermore, the macroreticular chelating resin, containing amidoxime group had higher adsorption of uranium (VI) in comparison to other metal ions studied. Finally, the alkaline treatment enhanced the potential for much faster adsorption characteristics and the highly porous chelating resin provided a more favorable pore structure for the rapid rate of diffusion of metal ions.  相似文献   

3.
The dense structure of polymeric matrices exposes only 10–20% of adsorption (amidoxime) groups, thus detracting from the extraction efficiency of uranium from seawater. Herein, the amidoxime-modified building units were cross-linked via the Scholl reaction into porous aromatic frameworks (PAFs). Due to the formation of open architecture, PAF adsorbents reveal a larger utilization ratio (>60%) of amidoxime groups. Consequently, PAF samples enable an ultrahigh uranium capacity of 702 mg g−1, which creates a 16-fold capacity enhancement and gains a 7-fold adsorption rate improvement compared with polymer-based adsorbents. Notably, PAF solids are able to be integrated into various devices, thus realizing versatile and efficacious uranium extraction from real seawater (meeting the commercial standard ∼6 mg g−1 in 21 days). In addition, the final cost using our PAF-based adsorbent is US $189.77 per kg uranium, it is in accordance with the prevailing market cost ($100–335 per kg).

The dense structure of polymeric matrices exposes only 10–20% of adsorption (amidoxime) groups, thus detracting from the extraction efficiency of uranium from seawater.  相似文献   

4.
By chemical cross‐linking the amidoxime group onto dual‐surfaces of natural ore materials, namely halloysite nanotubes (HNTs), an efficient adsorbent, AO‐HNTs, is developed. AO‐HNTs show high uranium adsorption capacity of 456.24 mg g?1 in 32 ppm uranium‐spiked simulated seawater. In natural seawater, AO‐HNTs reach the high uranium extraction capacity of 9.01 mg g?1 after 30 days’ field test. The dual‐surface amidoximated hollow nanotubular AO‐HNTs exhibit more coordination active sites for uranium adsorption, which is attributed to the high and fast uranium adsorption capacity. Because of the stable natural ore structure, AO‐HNTs also show long service life. Benefiting from the low cost of HNTs, the cost for uranium extraction from seawater is close to the uranium price in the spot uranium market, suggesting that AO‐HNTs could be used for economical extraction of uranium from the oceans.  相似文献   

5.
Crosslinked acrylic acid (AA) acrylonitrile (AN) copolymer was prepared by suspension copolymerization in the presence of poly (vinyl alcohol) as suspending agent and N,N-methylenebisacrylamide (MBA) and divinylbenzene (DVB) as crosslinking agents. The molecular ratios between AN and AA was 95: 5 mol%. Different ratios 2, 5, and 10 wt% of crosslinkers was used. The nitrile group of the copolymer was converted to acrylamidoxime in the presence of hydroxylamine. Morphologies of the prepared resins were examined by scanning electron microscope (SEM). Recovery of uranium ions was investigated. The adsorption of uranium was occurred in nitric acid, hydrochloric acid and sulfuric acid solutions. Effect of pH, time of loading, type of acid, ratio, and type of crosslinker were investigated. Regeneration of eluted resins was determined.  相似文献   

6.
Amidoxime-based adsorbents are widely studied as the main adsorbent in the recovery of uranium from seawater.However,the adsorption rate and loading capacity of such adsorbents should be further improved due to the economic viability consideration.In this paper,polyvinyl alcohol functionalized with amidoxime(PVA-g-AO)has been prepared as a new adsorbent for uranium(Ⅵ)adsorption from aqueous solution.The physicochemical properties of PVA-g-AO were investigated using infrared spectroscopy(IR),scanning electron microscope(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).Results showed that the ligand monomers were successfully grafted onto the matrixes.The XRD and XPS analysis showed that uranium was adsorbed in metal ionic form rather than in crystal form.Uranyl(U(Ⅵ))adsorption properties onto PVA-g-AO were evaluated.The adsorption of U(Ⅵ)by PVA-g-AO was fast,with an equilibrium time of less than 50 min.Additionally the maximum adsorption capacity reached 42.84 mg/g at pH 4.0.  相似文献   

7.
Porous poly(hydroxamic acid) chelating resin was prepared by the reaction with poly(ethyl acrylate) crosslinked with divinylbenzene and hydrophilic crosslinking agent, and hydroxylamine. The hydrophilic crosslinking agents and diluent used in this article were ethylene glycol dimethacrylate or butanediol dimethacrylate, and 2,2,4-trimethyl pentane, respectively. The characterization of this type chelating resin was carried out by IR spectroscopy, density measurement, and scanning electron microscopy. Various metal binding properties such as extraction, kinetics, and selectivity were investigated with atomic absorption spectrometer and inductively coupled plasma spectrometer. Poly(hydroxamic acid) resins crosslinked with mixed crosslinking agents showed better metal extraction properties and faster adsorption rate than those crosslinked with divinylbenzene alone. And alkali treatment enhances the binding rate for metal ions because of the formation of other chelating ligands or micropores. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
采用4-氯甲基苯乙烯(VBC)为单体,二乙烯基苯为交联剂(DVB),以磁性γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)修饰硅胶微球为核,在偶氮二异丁腈(AIBN)引发下,以甲苯和聚乙二醇2000的混合溶液(质量比1∶2)为联合致孔剂,原位聚合制备了磁性聚苯乙烯-氯甲基苯乙烯材料(Fe3O4@Si O2@DVBVBC)。通过傅立叶红外光谱(FT-IR)、X-射线衍射(XRD)和氮气物理吸附对该材料的结构和组成特性进行了表征。以蒽为考察对象,对制备材料的吸附性能进行了考察,发现单体和交联剂的质量比对材料的吸附能力影响较大。当单体和交联剂的质量比为1∶4时,对蒽的吸附性能最佳。材料的孔结构会影响吸附平衡时间。制备的材料对蒽能够在30 min内达到吸附平衡且吸附率达95%。该材料对多环芳烃化合物的吸附主要依靠疏水作用。吸附动力学研究表明,材料对蒽的吸附性能对准一级动力学方程具有较好的拟合程度。采用2 mL乙腈涡旋15 min可将99%的蒽洗脱下来。  相似文献   

9.
本文以甲砜霉素为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,环氧氯丙烷为亲水调节剂,采用沉淀聚合法制备亲水性开环分子印迹聚合物(OC-HMIP),对其进行静态平衡吸附实验、Scatchard分析、色谱评价。结果表明,制备的OC-HMIP具有较大的吸附能力,良好的特异识别性,能够在水相中很好的分离模板分子及其结构类似物。另外又对制备出的聚合物进行了亲水性能测定,结果表明OC-HMIP的亲水性能显著提高。  相似文献   

10.
以甲基丙烯酸甲酯(MMA)、苯乙烯(St)和二乙烯苯(DVB)三元共聚体系为研究对象,采用气相色谱法研究了体系中MMA和DVB浓度对聚苯乙烯型树脂交联的影响。结果表明:MMA加速St和DVB的聚合速率,其中对St的加速作用又明显大于对DVB的。随MMA含量的增加,聚苯乙烯型树脂交联不均匀的情况得以明显改善,而增加体系中DVB的含量,DVB与St、MMA反应速率的差异变大,树脂交联不均匀的情况变严重。  相似文献   

11.
A series of silica sorbents with different content of amidoxime groups were prepared through co-condensation method and applied to extract uranium from saline lake brine. The optimum amidoxime group content was determined and effects of pH on uranium sorption were investigated. Sorption kinetic and isotherms were also investigated. XPS analysis indicated that the adsorption mechanism of uranium was attributed to the interaction between uranyl ion and N in the amidoxime. Amidoximated silica could efficiently absorb the naturally occurring uranium in the saline lake brine samples from Qinghai, China.  相似文献   

12.
In order to develop a new adsorbent for uranium, the adsorption of uranium from seawater by immobilized polyhydroxybenzene compounds has been investigated. Polyhydroxybenzene compounds having adjacent hydroxy groups, such as catechol and pyrogallol, form stable five-membered chelate ring with uranyl ion. The immobilized polyhydroxybenzene compounds have an excellent ability to adsorb uranium from seawater. Especially, the immobilized pyrogallol, having two chelating positions for uranyl ion, is the most suitable adsorbent for uranium recovery from seawater. This adsorbent also has a selectivity for uranium.  相似文献   

13.
Preparation of copolymer microspheres of diethylene glycol dimethacrylate (2G) with several comonomers by radiation-induced radical polymerization is described. Ethyl methacrylate (EMA), acrylamide, maleic anhydride, and styrene gave microspheres successively. The copolymerization resulted in gelation more easily than the 2G homopolymerization. The allowed ratio of copolymerization is up to about 0.4 as the mole fraction of comonomer for the solution containing 10 vol % 2G monomer. Copolymerization affected the size of microspheres by keeping its narrow distribution. The size of microspheres was increased by the copolymerization with EMA and styrene and, was decreased with acrylamide. The formation of microsphere strongly depends on the crosslinking ability of monomers. The crosslinking ability and reactivity in the copolymerization cause the change of the size of the microspheres. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
以氨基化修饰的SiO_2为内核,人工合成色素赤藓红为模板,甲醇/水为溶剂,4-乙烯基吡啶为功能单体,二甲基丙烯酸乙二醇酯为交联剂,偶氮二异丁腈为引发剂,采用表面印迹技术,制备核-壳型赤藓红分子印迹聚合物。通过红外光谱对其结构进行表征,并通过动力学吸附、等温饱和吸附和实际样品加标实验对其吸附性能进行评价。结果表明,核-壳型赤藓红分子印迹聚合物具有较快的吸附能力,在15min左右达到吸附平衡,有较好的吸附容量,能够从复杂的食品样品中选择性吸附模板,且回收可达85%。  相似文献   

15.
The development of efficient materials for high extraction of uranium(UO22+) from seawater is critical for nuclear energy. Poly(amidoxime)-reduced graphene oxide(PAO/rGO) composites with excellent adsorption capability for UO22+ were synthesized by in situ polymerization of acrylonitrile monomers on GO surfaces, followed by amidoximation treatment with hydroxylamine. The adsorption capacities of PAO/rGO composites for UO22+ reached as high as 872 mg/g at pH 4.0. The excellent tolerance of these composites for high salinity and their regeneration-reuse properties can be applied in the nuclear-fuel industry by high extraction of trace UO22+ ions from seawater.  相似文献   

16.
The reaction of glycerol with tert-butyl alcohol in the liquid phase on acid Amberlyst-type ion-exchange resins was studied. The influence of temperature, mole ratio n(TBA)/n(G), water and swelling of gel, and macroreticular type of polymer catalysts on etherification reaction was investigated. The most favourable reaction temperature is 75°C. The conversion of glycerol and yield of glycerol tert-butyl ethers has increased with the mole ratio n(TBA)/n(G). Dry form of macroreticular catalysts provided the best results. Etherification reaction of glycerol with isobutylene in non-aqueous conditions gives the highest yield of desired ethers. The influence of water was studied. The gel forms of ion-exchange resins have very low catalytic activity. It can be concluded that water has an inhibition effect on ion-exchange resins. By comparing the gel and macroreticular forms of Amberlyst ion-exchange resins it can be concluded that very acid forms of macroreticular ion-exchange resins with a high degree of crosslinking are more active catalysts for the studied reaction due to their pores which are sufficiently large so that the voluminous tert-butyl ethers of glycerol can be formed. It was estimated that tert-butyl alcohol as tert-butylation agent is not suitable for etherification of glycerol with the formation of di-and triethers.  相似文献   

17.
Pellicular, macroreticular and microreticular (gel-type) anion exchange resins were compared for the separation of plutonium from nitric acid solutions of mixed plutonium-uranium. AS Pellionex SAX (pellicular resin) and Amberlite IRA-93 (weak base macroreticular anion exchange resin) were found to have better uranium washing and plutonium eluting characteristics than any of the resins tested. However, the capacity of the pellicular resin was much lower than the other resins.  相似文献   

18.
The aim of this study is to compare different resins regarding their separation and pre-concentration efficiency for uranium from aqueous solutions and its subsequent radiometric determination by liquid scintillation counting (LSC). The different types of the investigated resins include: (a) a pure cation-exchange resin (Dowex Marathon C), (b) a complex forming resin (Chelex 100) and (c) an impregnated resin (5% diethylene glycol succinate on Chromosorb W-H). The radiometric measurements were performed after mixing of the pre-concentrated aqueous phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, salinity (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions or humic acid and silica colloids) on the separation recovery have been investigated at constant uranium/radioactivity concentration. According to the experimental results the maximum chemical recovery differs significantly from one resin to another as a function of either, pH or the other chemical parameters. The optimum pH is found to be 8, 4 and 8 for Marathon C, Chelex-100 and diethylene glycol succinate, respectively. On the other hand, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) result in a significant decrease of the chemical recovery of uranium, particularly for Marathon C and the diethylene glycol succinate impregnated resins. Generally, among the studied resins Chelex 100 was superior regarding chemical recovery, selectivity, regeneration and reuse.  相似文献   

19.
Based on the photoinduced photothermal, photoelectric, and photocatalytic effects of black phosphorus (BP) nanosheets, a BP‐PAO fiber with enhanced uranium extraction capacity and high antibiofouling activity is fabricated by compositing BP nanosheets into polyacrylamidoxime (PAO). The photothermal effect increases the coordination interaction between UO22+ and the functional amidoxime group, and the photoelectric effect produces the surface positive electric field that exhibits electrostatic attraction to the negative [UO2(CO3)3]4?, which all increase the capacity for uranium adsorption. The photocatalytic effect endows the adsorbent with high antibiofouling activity by producing biotoxic reactive oxygen species. Owing to these three photoinduced effects, the photoinduced BP‐PAO fiber shows a high uranium adsorption capacity of 11.76 mg g?1, which is 1.50 times of the PAO fiber, in bacteria‐containing natural seawater.  相似文献   

20.
利凡诺分子模板聚合物的吸附与识别特性研究   总被引:25,自引:3,他引:22  
以利凡诺药物为模板分子,α-甲基丙烯酸为功能基单体,乙二醇二甲基丙烯酸酯为交联剂,选用分子模板技术,合成了一种新的具有类似于酶或药物受体结合部位为结构特征的分子模板聚合物.研究了它对利凡诺和其它底物的吸附特性和选择性识别能力.结果表明,与组成相同的非模板聚合物相比,利凡诺分子模板聚合物有较大的吸附性能和高度的选择性及识别能力.静电作用和氢键在吸附和识别过程中发挥着重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号