首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
Photoinduced electron transfer from fluorene to perylene bisimide has been studied for 2,7-bis(N-(1-hexylheptyl)-3,4:9,10-perylene-bisimide-N'-yl))-9,9-didodecylfluorene (PFP) in 11 different organic solvents. The intramolecular charge-separated state in PFP is almost isoenergetic with the locally excited state of the perylene bisimide. As a consequence of the small change in free energy for charge separation, the electron transfer rate strongly depends on subtle changes in the medium. The rate constant k(CS) for the electron transfer from fluorene to perylene bisimide moiety in the excited state varies over more than 2 orders of magnitude ( approximately 10(8)-10(10) s(-1)) with the solvent but does not show the familiar increase with polarity. The widely differing rate constants can be successfully explained by considering (1) the contribution of the polarization energy of the dipole moment in the transition state and by (2) the classical Marcus-Jortner model and assuming a spherical cavity for the charge-separated state. Using the first model, we show that lnk(CS) should vary linearly with Deltaf [Deltaf = (epsilon(r) - 1)/(2epsilon(r) + 1) - (n(2) - 1)/(2n(2) + 1), where epsilon(r) and n represent the static dielectric constant and the refractive index of the solvent, respectively], in accordance with experimental results. The second model, where the reorganization energy scales linearly with Deltaf, provides quantitative agreement with experimental rate constants within a factor of 2.  相似文献   

2.
The photophysical properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF = tetrahydrofuran, PPh(3) = triphenylphosphine, py = pyridine) were explored upon excitation with visible light. Time-resolved absorption shows that all the complexes possess a long-lived transient (3.5-5.0 micros) assigned as an electronic excited state of the molecules, and they exhibit an optical transition at approximately 760 nm whose position is independent of axial ligand. No emission from the Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py) systems was detected, but energy transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to the (3)pipi excited state of perylene is observed. Electron transfer from Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) to 4,4'-dimethyl viologen (MV(2+)) and chloro-p-benzoquinone (Cl-BQ) takes place with quenching rate constants (k(q)) of 8.0 x 10(6) and 1.2 x 10(6) M(-1) s(-1) in methanol, respectively. A k(q) value of 2 x 10(8) M(-1) s(-1) was measured for the quenching of the excited state of Rh(2)(O(2)CCH(3))(4)(PPh(3))(2) by O(2) in methanol. The observations are consistent with the production of an excited state with excited-state energy, E(00), between 1.34 and 1.77 eV.  相似文献   

3.
Photoinduced electron transfer in two room-temperature ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF(6)) and 1-octyl-3-methylimidazolium hexafluorophosphate (OMIM-PF(6)), has been investigated using steady-state fluorescence quenching of 9,10-dicyanoanthracene with a series of single electron donors. From these fluorescence quenching rates, reorganization energy (lambda) values and k(diff) values can be derived from a Rehm-Weller analysis. In many cases, these fluorescence quenching reactions occur at rates larger than what would be expected based on the Smoluchowski equation. In addition, lambda values of 10.1 kcal/mol and 16.3 kcal/mol for BMIM-PF(6) and OMIM-PF(6), respectively, have been determined.  相似文献   

4.
Photoinduced electron transfer from a variety of electron donors including alkylbenzenes to the singlet excited state of acridine and pyrene is accelerated significantly by the presence of scandium triflate [Sc(OTf)(3)] in acetonitrile, whereas no photoinduced electron transfer from alkylbenzenes to the singlet excited state of acridine or pyrene takes place in the absence of Sc(OTf)(3). The rate constants of the Sc(OTf)(3)-promoted photoinduced electron-transfer reactions (k(et)) of acridine to afford the complex between acridine radical anion and Sc(OTf)(3) remain constant under the conditions such that all the acridine molecules form the complex with Sc(OTf)(3). In contrast to the case of acridine, the k(et) value of the Sc(OTf)(3)-promoted photoinduced electron transfer of pyrene increases with an increase in concentration of Sc(OTf)(3) to exhibit first-order dependence on [Sc(OTf)(3)] at low concentrations, changing to second-order dependence at high concentrations. The first-order and second-order dependence of k(et) on [Sc(OTf)(3)] is ascribed to the 1:1 and 1:2 complexes formation between pyrene radical anion and Sc(OTf)(3). The positive shifts of the one-electron redox potentials for the couple between the singlet excited state and the ground-state radical anion of acridine and pyrene in the presence of Sc(OTf)(3) as compared to those in the absence of Sc(OTf)(3) have been determined by adapting the free energy relationship for the photoinduced electron-transfer reactions. The Sc(OTf)(3)-promoted photoinduced electron transfer from hexamethylbenzene to the singlet excited state of acridine or pyrene leads to efficient oxygenation of hexamethylbenzene to produce pentamethylbenzyl alcohol which is further oxygenated under prolonged photoirradiation of an O(2)-saturated acetonitrile solution of hexamethylbenzene in the presence of acridine or pyrene which acts as a photocatalyst together with Sc(OTf)(3). The photocatalytic oxygenation mechanism has been proposed based on the studies on the quantum yields, the fluorescence quenching, and direct detection of the reaction intermediates by ESR and laser flash photolysis.  相似文献   

5.
Charge-transfer quenching of the singlet excited states of cyanoaromatic electron acceptors by pyridine is characterized by a driving force dependence that resembles those of conventional electron-transfer reactions, except that a plot of the log of the quenching rate constants versus the free energy of electron transfer is displaced toward the endothermic region by 0.5-0.8 eV. Specifically, the reactions with pyridine display rapid quenching when conventional electron transfer is highly endothermic. As an example, the rate constant for quenching of the excited dicyanoanthracene is 3.5 x 10(9) M(-1)s(-1), even though formation of a conventional radical ion pair, A*-D*+, is endothermic by approximately 0.6 eV. No long-lived radical ions or exciplex intermediates can be detected on the picosecond to microsecond time scale. Instead, the reactions are proposed to proceed via formation of a previously undescribed, short-lived charge-transfer intermediate we call a "bonded exciplex", A- -D+. The bonded exciplex can be formally thought of as resulting from bond formation between the unpaired electrons of the radical ions A*- and D*+. The covalent bonding interaction significantly lowers the energy of the charge-transfer state. As a result of this interaction, the energy decreases with decreasing separation distance, and near van der Waals contact, the A- -D+ bonded state mixes with the repulsive excited state of the acceptor, allowing efficient reaction to form A- -D+ even when formation of a radical ion pair A*-D*+ is thermodynamically forbidden. Evidence for the bonded exciplex intermediate comes from studies of steric and Coulombic effects on the quenching rate constants and from extensive DFT computations that clearly show a curve crossing between the ground state and the low-energy bonded exciplex state.  相似文献   

6.
The fundamental nature of samarium(II) complexes in THF/HMPA (HMPA = hexamethylphosphoramide) solutions containing SmI2 has been clarified by means of cyclic voltammetry, conductivity measurements, UV spectroscopy, and kinetic measurements. The principal species is not [SmI2(hmpa)4] as previously suggested, but either the ionic cluster [Sm(hmpa)4(thf)2+2I- if four equivalents of HMPA is present in the THF solution or [Sm(hmpa)6]2+ 2I- in the presence of at least 10 equivalents of HMPA. The formal potential of the [Sm(hmpa)4(thf)2]3+ 2I-/[Sm(hmpa)4(thf)2]2- 2I- redox couple determined by cyclic voltammetry was -1.79 +/- 0.08 V versus SCE. The order of reactivity of the samarium(II) complexes was found to be [Sm(hmpa)6]2+2I- > [Sm(hmpa)4(thf)2]2+2I- > SmI2 in their respective reactions with 1-iodobutane and with benzyl chloride. Very high rate enhancements, of the order of 1,000-15,000-fold, were observed upon addition of HMPA to the THF solution containing SmI2, Comparison of these rate constants with the corresponding rate constants for electron transfer (ET) reactions involving aromatic radical anions revealed that none of the reactions studied can be classified as outer-sphere ET processes and that the inner-sphere electron-donating abilities of the [Sm(hmpa)4(thf)2]2+ 2I- and SmI2 complexes are comparable. The inner-sphere ET character of the transition state increases on going from 1-iodobutane and benzyl bromide to benzyl chloride and acetophenone.  相似文献   

7.
The adsorption of riboflavin on the surface of TiO(2) colloidal particles and the electron transfer process from its singlet excited state to the conduction band of TiO(2) were examined by absorption and fluorescence quenching measurements. The apparent association constants (K(app)) were determined. The quenching mechanism is discussed involving electron transfer from riboflavin to TiO(2).  相似文献   

8.
9.
The quenching of firefly bioluminescence (BL) in presence of xanthene dyes and tetratolylporphyrin was investigated. The BL intensity was quenched with an altered decay pattern in presence of xanthene dyes and tetratolylporphyrin. The electronic absorption spectra indicate that there is no significant interaction occurring between the dyes and the BL components in the ground state. The BL quenching decay rate and fluorescence quenching studies of luciferin by the dyes suggest an energy transfer through an exciplex, involving oxyluciferin, in the excited state and the dyes, in the ground state. The bimolecular quenching rate constant (K(q)) values obtained from fluorescence studies varied between 7.7 x 10(12) and 19.8 x 10(12)M(-1)s(-1). The magnitude of the bimolecular quenching rate constants confirmed the complex formation between dye and excited oxyluciferin. The exciplex subsequently undergoes a non-radiative decay to the ground state via a combination of heavy atom induced and F?rster-type energy transfer. The decay rate constants in presence and in absence of dyes vary between 7.47 x 10(-4) and 7.6 x 10(-2)s(-1). In the presence of dyes the effective decay rate constants (k(eff)) increased while the lifetime of light emitting species decreased. The kinetic studies in presence of singlet oxygen scavengers, like beta-carotene and NaN(3), prove that there is no significant quenching of the firefly BL due to the formation of singlet oxygen.  相似文献   

10.
Brennan JL  Howlett M  Forster RJ 《Faraday discussions》2002,(121):391-403;discussion 441-62
Transient emission spectroscopy has been used to probe the rate of photoinduced electron transfer between metal centres within a novel trimeric complex [[Os(bpy)2(bpe)2][Os(bpy)2Cl]2]4+, where bpy is 2,2'-bipyridyl and bpe is trans-1,2-bis-(4-pyridyl)ethylene. Transient emission experiments on the trimer, and on [Os(bpy)2 (bpe)2]2+ in which the [Os(bpy)2 Cl]+ quenching moieties are absent, reveal that the rate of photoinduced electron transfer (PET) across the bpe bridge is 1.3 +/- 0.1 x 10(8) s(-1). Investigations into the driving forces for oxidation and reduction of the electronically excited state within the trimer indicate that quenching of the [Os(bpy)2 (bpe)2]2+ centre within the trimer involves electron transfer from the [bpe Os(bpy)2 Cl]+ centres to the electronically excited state with a driving force of -0.3 eV. Monolayers of the complex, [Os(bpy)2 bpe pyridine]2+, have been formed by spontaneous adsorption onto platinum microelectrodes and used to probe the dynamics of electron transfer across the trans-1,2-bis-(4-pyridyl)ethylene bridge in the ground state. These monolayers are stable and exhibit well defined voltammetric responses for the Os2+/3+ redox reaction. Cyclic voltammograms recorded at high scan rates can be accurately modelled according to a non-adiabatic electron transfer model based on the Marcus theory using a standard heterogeneous electron transfer rate constant, k(o), of 3.1 +/- 0.2 x 10(4) s(-1) and a reorganization energy of 0.4 +/- 0.1 eV. This rate constant is a factor of approximately two orders of magnitude smaller than that found for photoinduced electron transfer across the same bpe bridge for identical driving forces. This significant difference is interpreted in terms of both the nature of the orbitals involved in electrochemically and optically driven electron transfer, as well as the strength of electronic coupling between two molecular components as opposed to a molecular component and a metal electrode.  相似文献   

11.
We have explored the photogeneration of the coumarin 314 radical cation by using nanosecond laser excitation at wavelengths longer than 400 nm in benzene, acetonitrile, dichloromethane, and aqueous media. In addition, time-resolved absorption spectroscopy measurements allowed detection of the triplet excited state of coumarin 314 (C(314)) with a maximum absorption at 550 nm in benzene. The triplet excited state has a lifetime of 90 μs in benzene. It is readily quenched by oxygen (k(q) = 5.0 × 10(9) M(-1) s(-1)). From triplet-triplet energy transfer quenching experiments, it is shown that the energy of this triplet excited state is higher than 35 kcal/mol, in accord with the relatively large singlet oxygen quantum yield (Φ(Δ) = 0.25). However, in aqueous media, the coumarin triplet was no longer observed, and instead of that, a long-lived (160 μs in air-equilibrated solutions) free radical cation with a maximum absorbance at 370 nm was detected. The free radical cation generation, which has a quantum yield of 0.2, occurs by electron photoejection. Moreover, density functional theory (DFT) calculations indicate that at least 40% of the electronic density is placed on the nitrogen atom in aqueous media, which explains its lack of reactivity toward oxygen. On the other hand, rate constant values close to the diffusion rate limit in water (>10(9) M(-1) s(-1)) were found for the quenching of the C(314) free radical cation by phenolic antioxidants. The results have been interpreted by an electron-transfer reaction between the phenolic antioxidant and the radical cation where ion pair formation could be involved.  相似文献   

12.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

13.
The property of the lowest excited triplet states of xanthone in acetonitrile was investigated using time-resolved laser °ash photolysis at 355 nm. The transient absorption spectra and the quenching rate constants(kq) of the excited xanthone with several amines were determined. Good correlation between lgkq and the driving force of the reactions suggests the electron transfer mechanism, except aniline and 3-nitroaniline (3-NO2-A) which showed energy transfer mechanism. With the appearance of ketyl radical, hydrogen atom transfer also happened between xanthone and dimethyl-p-toluidine, 3,5,N,N-tetramethylaniline, N,N-dimethylaniline, and triethylamine. Therefore, both electron transfer and H-atom transfer occured in these systems. Great discrepancies of kq values were discovered in H-atom abstraction reactions for alcohols and phenols, which can be explained by di?erent abstraction mechanisms. The quenching rate constants between xanthone and alcohols correlate well with the ?-C?H bonding energy of alcohols.  相似文献   

14.
In a landmark publication over 40 years ago, Rehm and Weller (RW) showed that the electron transfer quenching constants for excited-state molecules in acetonitrile could be correlated with the excited-state energies and the redox potentials of the electron donors and acceptors. The correlation was interpreted in terms of electron transfer between the molecules in the encounter pair (A*/D ? A(?-)/D(?+) for acceptor A and donor D) and expressed by a semiempirical formula relating the quenching constant, k(q), to the free energy of reaction, ΔG. We have reinvestigated the mechanism for many Rehm and Weller reactions in the endergonic or weakly exergonic regions. We find they are not simple electron transfer processes. Rather, they involve exciplexes as the dominant, kinetically and spectroscopically observable intermediate. Thus, the Rehm-Weller formula rests on an incorrect mechanism. We have remeasured k(q) for many of these reactions and also reevaluated the ΔG values using accurately determined redox potentials and revised excitation energies. We found significant discrepancies in both ΔG and k(q), including A*/D pairs at high endergonicity that did not exhibit any quenching. The revised data were found to obey the Sandros-Boltzmann (SB) equation k(q) = k(lim)/[1 + exp[(ΔG + s)/RT]]. This behavior is attributed to rapid interconversion among the encounter pairs and the exciplex (A*/D ? exciplex ? A(?-)/D(?+)). The quantity k(lim) represents approximately the diffusion-limited rate constant, and s the free energy difference between the radical ion encounter pair and the free radical ions (A(?-)/D(?+) vs A(?-) + D(?+)). The shift relative to ΔG for the overall reaction is positive, s = 0.06 eV, rather than the negative value of -0.06 eV assumed by RW. The positive value of s involves the poorer solvation of A(?-)/D(?+) relative to the free A(?-) + D(?+), which opposes the Coulombic stabilization of A(?-)/D(?+). The SB equation does not involve the microscopic rate constants for interconversion among the encounter pairs and the exciplex. Data that fit this equation contain no information about such rate constants except that they are faster than dissociation of the encounter pairs to (re-)form the corresponding free species (A* + D or A(?-) + D(?+)). All of the present conclusions agree with our recent results for quenching of excited cyanoaromatic acceptors by aromatic donors, with the two data sets showing indistinguishable dependencies of k(q) on ΔG.  相似文献   

15.
Quenching of the 3MLCT excited state of [Ru(bpy)3]2+ (bpy=bipyridine) by the reduction products (MV*+ and MV0) of methyl viologen (MV2+) was studied by a combination of electrochemistry with laser flash photolysis or femtosecond pump-probe spectroscopy. Both for the bimolecular reactions and for the reactions in an Ru(bpy)3(2+)-MVn+ dyad, quenching by MV*+ and MV0 is reductive and gives the reduced ruthenium complex [Ru(bpy)3]+, in contrast to the oxidative quenching by MV2+. Rate constants of quenching (kq), and thermal charge recombination (krec) and cage escape yields (phi(ce)) were determined for the bimolecular reactions, and rates of forward (kf) and backward (kb) electron transfer in the dyad were measured for quenching by MV2+, MV*+, and MV0. The reactions in the dyad are very rapid, with values up to kf = 1.3 x 10(12) s(-1) for *Ru(bpy)3(2+)-MV*+. In addition, a long-lived (tau = 15 ps) vibrationally excited state of MV*+ with a characteristically structured absorption spectrum was detected; this was generated by direct excitation of the MV*+ moiety both at 460 and 600 nm. The results show that the direction of photoinduced electron transfer in a Ru(bpy)3-MV molecule can be switched by an externally applied bias.  相似文献   

16.
Synthesis, ground-, and excited-state properties are reported for two new electron donor-bridge-acceptor (D-B-A) molecules and two new photophysical model complexes. The D-B-A molecules are [Ru(bpy)2(bpy-phi-MV)](PF6)4 (3) and [Ru(tmb)2(bpy-phi-MV)](PF6)4 (4), where bpy is 2,2'-bipyridine, tmb is 4,4',5,5'-tetramethyl-2,2'-bipyridine, MV is methyl viologen, and phi is a phenylene spacer. Their model complexes are [Ru(bpy)2(p-tol-bpy)](PF6)2 (1) and [Ru(tmb)2(p-tol-bpy)](PF6)2 (2), where p-tolyl-bpy is 4-(p-tolyl)-2,2'-bipyridine. Photophysical characterization of 1 and 2 indicates that 2.17 eV and 2.12 eV are stored in their respective (3)MLCT (metal-to-ligand charge transfer) excited state. These values along with electrochemical measurements show that photoinduced electron transfer (D*-B-A-->D (+)-B-A(-)) is favorable in 3 and 4 with DeltaG degrees(ET)=-0.52 eV and -0.62 eV, respectively. The driving force for the reverse process (D(+)-B-A(-) --> D-B-A) is also reported: DeltaG degrees(BET)=-1.7 eV for 3 and -1.5 eV for 4. Transient absorption (TA) spectra for 3 and 4 in 298 K acetonitrile provide evidence that reduced methyl viologen is observable at 50 ps following excitation. Detailed TA kinetics confirm this, and the data are fit to a model to determine both forward (k(ET)) and back (k(BET)) electron transfer rate constants: k(ET)=2.6 x 10(10) s(-1) for 3 and 2.8 x 10(10) s(-1) for 4; k(BET)=0.62 x 10(10) s(-1) for 3 and 1.37 x 10(10) s(-1) for 4. The similar rate constants k ET for 3 and 4 despite a 100 meV driving force (DeltaG degrees(ET)) increase suggests that forward electron transfer in these molecules in room temperature acetonitrile is nearly barrierless as predicted by the Marcus theory. The reduction in electron transfer reorganization energy necessary for this barrierless reactivity is attributed to excited-state electron delocalization in the (3)MLCT excited states of 3 and 4, an effect that is made possible by excited-state conformational changes in the aryl-substituted ligands of these complexes.  相似文献   

17.
Rate constants of photoinduced electron-transfer oxidation of unsaturated fatty acids with a series of singlet excited states of oxidants in acetonitrile at 298 K were examined and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of unsaturated fatty acids and the intrinsic barrier of electron transfer. The k(et) values of linoleic acid with a series of oxidants are the same as the corresponding k(et) values of methyl linoleate, linolenic acid, and arachidonic acid, leading to the same E(ox) value of linoleic acid, methyl linoleate, linolenic acid, and arachidonic acid (1.76 V vs SCE), which is significantly lower than that of oleic acid (2.03 V vs SCE) as indicated by the smaller k(et) values of oleic acid than those of other unsaturated fatty acids. The radical cation of linoleic acid produced in photoinduced electron transfer from linoleic acid to the singlet excited state of 10-methylacridinium ion as well as that of 9,10-dicyanoanthracene was detected by laser flash photolysis experiments. The apparent rate constant of deprotonation of the radical cation of linoleic acid was determined as 8.1 x 10(3) s(-1). In the presence of oxygen, the addition of oxygen to the deprotonated radical produces the peroxyl radical, which has successfully been detected by ESR. No thermal electron transfer or proton-coupled electron transfer has occurred from linoleic acid to a strong one-electron oxidant, Ru(bpy)3(3+) (bpy = 2,2'-bipyridine) or Fe(bpy)3(3+). The present results on the electron-transfer and proton-transfer properties of unsaturated fatty acids provide valuable mechanistic insight into lipoxygenases to clarify the proton-coupled electron-transfer process in the catalytic function.  相似文献   

18.
Continuing our work toward a system mimicking the electron-transfer steps from manganese to P(680)(+) in photosystem II (PS II), we report a series of ruthenium(II)-manganese(II) complexes that display intramolecular electron transfer from manganese(II) to photooxidized ruthenium(III). The electron-transfer rate constant (k(ET)) values span a large range, 1 x 10(5)-2 x 10(7) s(-1), and we have investigated different factors that are responsible for the variation. The reorganization energies determined experimentally (lambda = 1.5-2.0 eV) are larger than expected for solvent reorganization in complexes of similar size in polar solvents (typically lambda approximately 1.0 eV). This result indicates that the inner reorganization energy is relatively large and, consequently, that at moderate driving force values manganese complexes are not fast donors. Both the type of manganese ligand and the link between the two metals are shown to be of great importance to the electron-transfer rate. In contrast, we show that the quenching of the excited state of the ruthenium(II) moiety by manganese(II) in this series of complexes mainly depends on the distance between the metals. However, by synthetically modifying the sensitizer so that the lowest metal-to-ligand charge transfer state was localized on the nonbridging ruthenium(II) ligands, we could reduce the quenching rate constant in one complex by a factor of 700 without changing the bridging ligand. Still, the manganese(II)-ruthenium(III) electron-transfer rate constant was not reduced. Consequently, the modification resulted in a complex with very favorable properties.  相似文献   

19.
Rate constants (k) for exergonic and endergonic electron-transfer reactions of equilibrating radical cations (A(?+) + B ? A + B(?+)) in acetonitrile could be fit well by a simple Sandros-Boltzmann (SB) function of the reaction free energy (ΔG) having a plateau with a limiting rate constant k(lim) in the exergonic region, followed, near the thermoneutral point, by a steep drop in log k vs ΔG with a slope of 1/RT. Similar behavior was observed for another charge shift reaction, the electron-transfer quenching of excited pyrylium cations (P(+)*) by neutral donors (P(+)* + D → P(?) + D(?+)). In this case, SB dependence was observed when the logarithm of the quenching constant (log k(q)) was plotted vs ΔG + s, where the shift term, s, equals +0.08 eV and ΔG is the free energy change for the net reaction (E(redox) - E(excit)). The shift term is attributed to partial desolvation of the radical cation in the product encounter pair (P(?)/D(?+)), which raises its free energy relative to the free species. Remarkably, electron-transfer quenching of neutral reactants (A* + D → A(?-) + D(?+)) using excited cyanoaromatic acceptors and aromatic hydrocarbon donors was also found to follow an SB dependence of log k(q) on ΔG, with a positive s, +0.06 eV. This positive shift contrasts with the long-accepted prediction of a negative value, -0.06 eV, for the free energy of an A(?-)/D(?+) encounter pair relative to the free radical ions. That prediction incorporated only a Coulombic stabilization of the A(?-)/D(?+) encounter pair relative to the free radical ions. In contrast, the results presented here show that the positive value of s indicates a decrease in solvent stabilization of the A(?-)/D(?+) encounter pair, which outweighs Coulombic stabilization in acetonitrile. These quenching reactions are proposed to proceed via rapidly interconverting encounter pairs with an exciplex as intermediate, A*/D ? exciplex ? A(?-)/D(?+). Weak exciplex fluorescence was observed in each case. For several reactions in the endergonic region, rate constants for the reversible formation and decay of the exciplexes were determined using time-correlated single-photon counting. The quenching constants derived from the transient kinetics agreed well with those from the conventional Stern-Volmer plots. For excited-state electron-transfer processes, caution is required in correlating quenching constants vs reaction free energies when ΔG exceeds ~+0.1 eV. Beyond this point, additional exciplex deactivation pathways-fluorescence, intersystem crossing, and nonradiative decay-are likely to dominate, resulting in a change in mechanism.  相似文献   

20.
A number of electron donors, acceptors and diads containing xanthene dyes were sythesized. When the dyes were excited, the rate constants and the efficiencies of the intermolecular and intramolecular photo-induced electron transfer reactions were determined and calculated. It is found that the photo-induced electron transfer reactions occurred between xanthene dyes and many, including very weak donors or acceptors. The rate constants of intermolecular reactions were controlled by diffusion, and influenced by the reactant concentrations. The laser flash experiments showed that for low reactant concentrations, this kind of reactions took place mainly via the triplet excited state of the dyes. If different electric charges exist with dyes and donors/acceptors, there will be static quenching of the dyes' fluorescence. The intramolecular electron transfer reactions are independent of the solution concentrations, and they may directly proceed via the singlet excited state of the dyes effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号