首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
Rate constants (k) for exergonic and endergonic electron-transfer reactions of equilibrating radical cations (A(?+) + B ? A + B(?+)) in acetonitrile could be fit well by a simple Sandros-Boltzmann (SB) function of the reaction free energy (ΔG) having a plateau with a limiting rate constant k(lim) in the exergonic region, followed, near the thermoneutral point, by a steep drop in log k vs ΔG with a slope of 1/RT. Similar behavior was observed for another charge shift reaction, the electron-transfer quenching of excited pyrylium cations (P(+)*) by neutral donors (P(+)* + D → P(?) + D(?+)). In this case, SB dependence was observed when the logarithm of the quenching constant (log k(q)) was plotted vs ΔG + s, where the shift term, s, equals +0.08 eV and ΔG is the free energy change for the net reaction (E(redox) - E(excit)). The shift term is attributed to partial desolvation of the radical cation in the product encounter pair (P(?)/D(?+)), which raises its free energy relative to the free species. Remarkably, electron-transfer quenching of neutral reactants (A* + D → A(?-) + D(?+)) using excited cyanoaromatic acceptors and aromatic hydrocarbon donors was also found to follow an SB dependence of log k(q) on ΔG, with a positive s, +0.06 eV. This positive shift contrasts with the long-accepted prediction of a negative value, -0.06 eV, for the free energy of an A(?-)/D(?+) encounter pair relative to the free radical ions. That prediction incorporated only a Coulombic stabilization of the A(?-)/D(?+) encounter pair relative to the free radical ions. In contrast, the results presented here show that the positive value of s indicates a decrease in solvent stabilization of the A(?-)/D(?+) encounter pair, which outweighs Coulombic stabilization in acetonitrile. These quenching reactions are proposed to proceed via rapidly interconverting encounter pairs with an exciplex as intermediate, A*/D ? exciplex ? A(?-)/D(?+). Weak exciplex fluorescence was observed in each case. For several reactions in the endergonic region, rate constants for the reversible formation and decay of the exciplexes were determined using time-correlated single-photon counting. The quenching constants derived from the transient kinetics agreed well with those from the conventional Stern-Volmer plots. For excited-state electron-transfer processes, caution is required in correlating quenching constants vs reaction free energies when ΔG exceeds ~+0.1 eV. Beyond this point, additional exciplex deactivation pathways-fluorescence, intersystem crossing, and nonradiative decay-are likely to dominate, resulting in a change in mechanism.  相似文献   

2.
To make the effects of molecular size on photoinduced electron-transfer (ET) reactions clear, the ET fluorescence quenching of aromatic hydrocarbons by trivalent lanthanide ions M3+ (europium ion Eu3+ and ytterbium ion Yb3+) and the following ET reactions such as the geminate and free radical recombination were studied in acetonitrile. The rate constant k(q) of fluorescence quenching, the yields of free radical (phi(R)) and fluorescer triplet (phi(T)) in fluorescence quenching, and the rate constant k(rec) of free radical recombination were measured. Upon analysis of the free energy dependence of k(q), phi(R), phi(T), and k(rec), it was found that the switchover of the fluorescence quenching mechanism occurs at deltaG(fet) = -1.4 to -1.6 eV: When deltaG(fet) < -1.6 eV, the fluorescence quenching by M3+ is induced by a long-distance ET yielding the geminate radical ion pairs. When deltaG(fet) > -1.4 eV, it is induced by an exciplex formation. The exciplex dissociates rapidly to yield either the fluorescer triplet or the geminate radical ion pairs. The large shift of switchover deltaG(fet) from -0.5 eV for aromatic quenchers to -1.4 to -1.6 eV for lanthanide ions is almost attributed to the difference in the molecular size of the quenchers. Furthermore, it was substantiated that the free energy dependence of ET rates for the geminate and free radical recombination is satisfactorily interpreted within the limits of the Marcus theory.  相似文献   

3.
The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.  相似文献   

4.
本文测定了在不同溶剂中一系列化合物以及氧分子对9,10-二氰基蒽(DCA)及9-氰基蒽(CNA)的荧光淬灭常数kq值及DCA与2,5-二甲基呋喃的激基复合物的发射光谱。这些化合物的kq值与计算所得自由能的变化△G之间的关系基本符合Rehm-Wdler关系。溶剂极性及溶剂粘度对荧光猝灭反应有影响,影响强电子给体kq值的主要因素是溶剂的粘度,而弱电子给体的kq值则主要决定于溶剂的极性。氧分子的kq值基本上与溶剂扩散速率常数走kdiff值吻合。  相似文献   

5.
The driving‐force dependence of bimolecular fluorescence quenching by electron transfer in solution, the Rehm–Weller experiment, is revisited. One of the three long‐standing unsolved questions about the features of this experiment is carefully analysed here, that is, is there a diffusional plateau? New experimental quenching rates are compiled for a single electron donor, 2,5‐bis(dimethylamino)‐1,3‐benzenedicarbonitrile, and eighteen electron acceptors in acetonitrile. The data are analysed in the framework of differential encounter theory by using an extended version of the Marcus theory to model the intrinsic electron‐transfer step. Only by including the hydrodynamic effect and the solvent structure can the experimental findings be well modelled. The diffusional control region, the “plateau”, reveals the inherent distance dependence of the reaction, which is shown to be a general feature of electron transfer in solution.  相似文献   

6.
We demonstrate detection, in the gas-phase, of O(1D2) at concentrations down to 10(7) cm(-3) and develop this new method for time-resolved kinetic studies allowing both the total removal rate of O(1D2), of up to 1.5 x 10(6) s(-1), and the fraction quenched to O(3P(J)) by species X, k(q)/k(X), to be determined precisely from a single time profile: at 295 K we find, k(O(1D2) + N2O) = (1.43 +/- 0.08) x 10(-10) cm3 s(-1) with k(q)/k(N2O) = 0.056 +/- 0.009; k(O(1D2) + C2H2) = (3.1 +/- 0.2) x 10(-10) cm3 s(-1) with k(q)/k(C2H2) = 0.020 +/- 0.010; k(q)/k(H2O) < 0.003 for O(1D2) + H2O.  相似文献   

7.
The mechanism of exciplex formation proposed in a previous paper has been refined to show how exciplex formation and Marcus electron transfer (ET) in fluorescence quenching are related to each other. This was done by making simple calculations of the free energies of the initial (DA*) and final (D+A-) states of ET. First it was shown that the decrease in D-A distance can induce intermolecular ET even in nonpolar solvents where solvent orientational polarization is absent, and that it leads to exciplex formation. This is consistent with experimental results that exciplex is most often observed in nonpolar solvents. The calculation was then extended to ET in polar solvents where the free energies are functions of both D-A distance and solvent orientational polarization. This enabled us to discuss both exciplex formation and Marcus ET in the same D-A pair and solvent on the basis of 2-dimensional free energy surfaces. The surfaces contain more information about the rates of these reactions, the mechanism of fluorescence quenching by ET, etc., than simple reaction schemes. By changing the parameters such as the free energy change of reaction, solvent dielectric constants, etc., one can construct the free energy surfaces for various systems. The effects of free energy change of reaction and of solvent polarity on the mechanism and relative importance of exciplex formation and Marcus ET in fluorescence quenching can be well explained. The free energy surface will also be useful for discussion of other phenomena related to ET reactions.  相似文献   

8.
The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.  相似文献   

9.
Charge-transfer quenching of the singlet excited states of cyanoaromatic electron acceptors by pyridine is characterized by a driving force dependence that resembles those of conventional electron-transfer reactions, except that a plot of the log of the quenching rate constants versus the free energy of electron transfer is displaced toward the endothermic region by 0.5-0.8 eV. Specifically, the reactions with pyridine display rapid quenching when conventional electron transfer is highly endothermic. As an example, the rate constant for quenching of the excited dicyanoanthracene is 3.5 x 10(9) M(-1)s(-1), even though formation of a conventional radical ion pair, A*-D*+, is endothermic by approximately 0.6 eV. No long-lived radical ions or exciplex intermediates can be detected on the picosecond to microsecond time scale. Instead, the reactions are proposed to proceed via formation of a previously undescribed, short-lived charge-transfer intermediate we call a "bonded exciplex", A- -D+. The bonded exciplex can be formally thought of as resulting from bond formation between the unpaired electrons of the radical ions A*- and D*+. The covalent bonding interaction significantly lowers the energy of the charge-transfer state. As a result of this interaction, the energy decreases with decreasing separation distance, and near van der Waals contact, the A- -D+ bonded state mixes with the repulsive excited state of the acceptor, allowing efficient reaction to form A- -D+ even when formation of a radical ion pair A*-D*+ is thermodynamically forbidden. Evidence for the bonded exciplex intermediate comes from studies of steric and Coulombic effects on the quenching rate constants and from extensive DFT computations that clearly show a curve crossing between the ground state and the low-energy bonded exciplex state.  相似文献   

10.
A systematic theoretical study has been performed on the low pressure thermal decomposition pathways of t-BuS(O)St-Bu using the CCSD(T)/cc-pV(D+d)Z//B3LYP/6-311++G(2d,2p), CCSD(T)/cc-pV(D+d)Z//PBEPBE/6-311++G(2d,2p), and G3B3 level of theories. Rate constants for the unimolecular decomposition pathways are calculated using Rice?Ramsperger?Kassel?Marcus (RRKM) theory. On the basis of the experimental observation and theoretical predictions, the pyrolysis channels are considered as primary and secondary pyrolysis reactions. The primary decomposition via a five-membered transition state leads to the formation of tert-butanethiosulfoxylic acid (t-BuSSOH) and 2-methylpropene (C4H8) almost exclusively having low-pressure limit rate constant k(1)(0) = 4.67 × 10(?6)T(?4.67) exp(?11.64 kcal mol(?1)/RT) cm3 mol(?1) s(?1) (T = 500?800 K). The primary decomposition via a six-membered transition state is also identified, and that leads to the tert-butanethiosulfinic acid t-BuS(OH)S, which is the branched chain isomer of t-BuSSOH. The formation of t-BuSSOH is thermodynamically as well as kinetically favorable over t-BuS(OH)S formation, and therefore the second product could not be found experimentally. Furthermore, calculation on secondary pyrolysis pathways involving the decomposition of t-BuSSOH leads to the formation of 1-oxatrisulfane (trans-HSSOH and cis-HSSOH) and their branched isomer S(SH)OH. These three secondary product formation rates are competitive, but thermodynamics do not favor the formation of the branched isomer. Among the secondary pyrolysis products, trans-HSSOH is the most stable one, and its formation rate constant at low pressure is calculated to be k(3)(0) = 5.49 × 10(28)T(?10.70) exp(?36.22 kcal mol(?1)/RT) cm3 mol(?1) s(?1) (T = 800?1500 K). Finally, the secondary pyrolysis pathway from less stable product t-BuS(OH)S is also predicted, and that leads to trans-HSSOH and cis-HSSOH products with almost equal rates. A bond-order analysis using Wiberg bond indexes obtained by natural bond orbital (NBO) calculation predicts that the primary and secondary pyrolysis of t-BuS(O)St-Bu occur via E1-like mechanism.  相似文献   

11.
Standard thermochemical data (in the form of Δ(f)H° and Δ(f)G°) are available for crystalline (c) materials but rarely for their corresponding amorphous (a) counterparts. This paper establishes correlations between the sets of data for the two material forms (where known), which can then be used as a guideline for estimation of missing data. Accordingly, Δ(f)H°(a)/kJ mol(-1) ≈ 0.993Δ(f)H°(c)/kJ mol(-1) + 12.52 (R(2) = 0.9999; n = 50) and Δ(f)G°/kJ mol(-1) ≈ 0.988Δ(f)H°(c)/kJ mol(-1) + 0.70 (R(2) = 0.9999; n = 10). Much more tentatively, we propose that S°(298)(c)/J K(-1) mol(-1) ≈ 1.084S°(298)(c)/J K(-1) mol(-1) + 6.54 (R(2) = 0.9873; n = 11). An amorphous hydrate enthalpic version of the Difference Rule is also proposed (and tested) in the form [Δ(f)H°(M(p)X(q)·nH(2)O,a) - Δ(f)H°(M(p)X(q),a)]/kJ mol(-1) ≈ Θ(Hf)n ≈ -302.0n, where M(p)X(q)·nH(2)O represents an amorphous hydrate and M(p)X(q) the corresponding amorphous anhydrous parent salt.  相似文献   

12.
Using a recently-developed chemiluminescence technique for monitoring O(1D), the rate coefficient, k1, of the important atmospheric reaction O(1D) + CH4 --> products has been determined over a wide temperature range, 227 to 450 K. The rate coefficient was shown to be independent of temperature, having a value of (1.91 +/- 0.08) x 10(-10) cm3 s(-1); the quoted uncertainties are with 95% confidence. This highly precise value, based on an extended set of determinations with very low scatter, is significantly greater, 26%, than current recommended values. Secondly, the fraction of O(1D) quenched to O(3P) by CH4, k(1q)/k1, was precisely determined from chemiluminescence decays over the temperature range 236 to 340 K. A temperature independent value for k(1q)/k1 of 0.002 +/- 0.003 was found. Finally, LIF detection of OH has been applied to accurately determine the product branching fraction to OH of O(1D) + CH4 at room temperature. Our value, k(1a)/k1 = 0.76 +/- 0.08 (95% confidence), is in line with recent determinations by other groups.  相似文献   

13.
Silicon phthalocyanine (SiPc) with two axially attached morpholine (MP) units was prepared, and its photophysics was studied by laser flash photolysis, steady state and time-resolved fluorescence methods. Both the fluorescence efficiency and lifetime of SiPc moiety were remarkably quenched, because of the efficient intramolecular photoinduced electron transfer (PET) from morpholine donors to SiPc moiety. The generated charge separation state (CSS), SiPc(?-)-MP(?+), which was observed by transient absorption spectra, showed a lifetime of 4.8 ns. The triplet quantum yield of SiPc unit in the supra-molecule is unexpectedly high, and the predominant spectral signal in microsecond-scale is triplet-triplet (T(1)-T(n)) absorption. This high triplet yield is due to the charge recombination of CSS that generates T(1) in 32% efficiency: SiPc(?-)-MP(?+) → (3)SiPc-MP. The T(1) formation process occurred efficiently because the CSS SiPc(?-)-MP(?+) has a higher energy (1.65 eV) than that of the triplet state (3)SiPc-MP (1.0 eV). Emission from the CSS was also observed: SiPc(?-)-MP(?+) → SiPc-MP + hν'.  相似文献   

14.
The fluorescence quenching by oxygen of 9,10-dimethylanthracene (DMEA) in liquid ethane and propane at pressures up to 60 MPa and 25 degrees C was investigated. The apparent activation volumes for the quenching rate constant, k(q),DeltaV++(q) , were 5.0 +/- 3.4 and 7.4 +/- 1.0 cm(3)/mol, whereas those for the solvent viscosity, eta,DeltaV++(eta) , were 190 +/- 22 and 42 +/- 1 cm(3)/mol in ethane and propane at 6.0 MPa, respectively. These results were discussed together with those in n-alkanes (C(4)-C(7)) and methylcyclohexane (MCH) that were previously reported, and it was found that DeltaV++(q) increases monotonically but DeltaV++(eta) decreases rapidly with increasing the number of carbon atoms in n-alkanes. The plot of ln k(q) against ln eta showed a leveling-off with decreasing eta. These observations were analyzed satisfactorily by the pressure dependence of the solvent viscosity on k(q) coupled with that of the radial distribution function, g(sigma), at contact with a hard sphere assumption. The apparent bimolecular rate constant, k(bim,0), for the quenching in the solvent cage was evaluated by extrapolating to g(sigma)eta = 0 in the plot of g(sigma)/k(q) against g(sigma)eta, and it was found that k(bim,0) decreased with increasing the radius of the solvent molecule. From the solvent size dependence of k(bim,0), the solvent cage effect was discussed phenomenologically.  相似文献   

15.
The radical anions and radical cations of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin have been studied using a combination of cyclic voltammetry, steady state absorption spectroscopy, and computational chemistry. N-Confused porphyrins (NCPs), alternatively called 2-aza-21-carba-5,10,15,20-tetraphenylporphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding the absorption spectra of the corresponding radical ions is paramount to future studies in multicomponent arrays where electron-transfer reactions are involved. NCP 1e was shown to oxidize at a potential of E(ox) 0.65 V vs Fc(+)|Fc in DMF and reduce at E(red) -1.42 V, while the corresponding values for 1i in toluene were E(ox) 0.60 V and E(red) -1.64 V. The geometries of these radical ions were computed at the B3LYP/6-31+G(d)//B3LYP/6-31G(d) level in the gas phase and in solution using the polarizable continuum model (PCM). From these structures and that of H(2)TPP and its corresponding radical ions, the computed redox potentials for 1e and 1i were calculated using the Born-Haber cycle. While the computed reduction potentials and electron affinities were in excellent agreement with the experimental reduction potentials, the calculated oxidation potentials displayed a somewhat less ideal relationship with experiment. The absorption spectra of the four radical ions were also measured experimentally, with radical cations 1e(?+) and 1i(?+) displaying significant changes in the Soret and Q-band regions as well as new low energy absorption bands in the near-IR region. The changes in the absorption spectra of radical anions 1e(?-) and 1i(?-) were not as dramatic, with the changes occurring only in the Soret and Q-band regions. These results were favorably modeled using time-dependent density functional calculations at the TD-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level. These results were also compared to the existing data of free base tetraphenylporphyrin and free base tetraphenylchlorin.  相似文献   

16.
The syntheses, single crystal X-ray structures, and magnetic properties of the homometallic μ?-oxo trinuclear clusters [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](ClO?) (1) and [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)?](NO?) (2) are reported (Ad = adamantane). The persistence of the trinuclear structure within 1 and 2 in CD?Cl? and C?D?Cl? solutions in the temperature range 190-390 K is demonstrated by 1H NMR. An equilibrium between the mixed pyridine clusters [Fe?(μ?-O)(μ-O?CAd)?(4-Mepy)(3-x)(4-Phpy)(x)](NO?) (x = 0, 1, 2, 3) with a close to statistical distribution of these species is observed in CD?Cl? solutions. Variable-temperature NMR line-broadening made it possible to quantify the coordinated/free 4-Rpy exchanges at the iron centers of 1 and 2: k(ex)2?? = 6.5 ± 1.3 × 10?1 s?1, ΔH(?) = 89.47 ± 2 kJ mol?1, and ΔS(?) = +51.8 ± 6 J K?1 mol?1 for 1 and k(ex)2?? = 3.4 ± 0.5 × 10?1 s?1, ΔH(?) = 91.13 ± 2 kJ mol?1, and ΔS(?) = +51.9 ± 5 J K?1 mol?1 for 2. A limiting D mechanism is assigned for these ligand exchange reactions on the basis of first-order rate laws and positive and large entropies of activation. The exchange rates are 4 orders of magnitude slower than those observed for the ligand exchange on the reduced heterovalent cluster [Fe(III)?Fe(II)(μ?-O)(μ-O?CCH?)?(4-Phpy)?] (3). In 3, the intramolecular Fe(III)/Fe(II) electron exchange is too fast to be observed. At low temperatures, the 1/3 intermolecular second-order electron self-exchange reaction is faster than the 4-Phpy ligand exchange reactions on these two clusters, suggesting an outer-sphere mechanism: k?2?? = 72.4 ± 1.0 × 103 M?1 s?1, ΔH(?) = 18.18 ± 0.3 kJ mol?1, and ΔS(?) = -90.88 ± 1.0 J K?1 mol?1. The [Fe?(μ?-O)(μ-O?CCH?)?(4-Phpy)?](+/0) electron self-exchange reaction is compared with the more than 3 orders of magnitude faster [Ru?(μ?-O)(μ-O?CCH?)?(py)?](+/0) self-exchange reaction (ΔΔG(exptl)(?298) = 18.2 kJ mol?1). The theoretical estimated self-exchange rate constants for both processes compare reasonably well with the experimental values. The equilibrium constant for the formation of the precursor to the electron-transfer and the free energy of activation contribution for the solvent reorganization to reach the electron transfer step are taken to be the same for both redox couples. The larger ΔG(exptl)(?298) for the 1/3 iron self-exchange is attributed to the larger (11.1 kJ mol?1) inner-sphere reorganization energy of the 1 and 3 iron clusters in addition to a supplementary energy (6.1 kJ mol?1) which arises as a result of the fact that each encounter is not electron-transfer spin-allowed for the iron redox couple.  相似文献   

17.
Phase transitions of an adsorption layer of dibenzyl viologen (dBV) as a typical diaryl viologen on a basal plane of a highly oriented pyrolytic graphite (HOPG) electrode are described using voltammetry, in situ electrochemical scanning tunneling microscopy (EC-STM), and electroreflectance (ER) spectroscopy. A monolayer redox process at less negative potential than the bulk redox process was found to be the first-order faradaic phase transition between a gaslike adsorption layer of dication (dBV(2+)) and a 2D condensed monolayer of radical cation (dBV(?+)). Comparison of the results of cyclic voltammetry and potential step chronoamperometry was made with those of heptyl viologen (HV), which also undergoes a faradaic phase transition of the first order. It suggested that the contribution of intermolecular π-π interaction between benzyl groups of dBV to the phase transition is minor and apparently equivalent to interchain interaction between the heptyl chains of HV. In situ EC-STM images of the 2D condensed monolayer demonstrated stripe patterns of the rows of dBV(?+) molecules forming 3-fold rotationally symmetric domains. The results of the ER measurements also revealed that the orientation of the longitudinal molecular axis of the bipyridinium moiety of dBV(?+) molecules lying flat on the HOPG electrode surface, most likely with a side-on configuration.  相似文献   

18.
The quenching rate constants of the excited triplet state of Rose Bengal (RB) by oxygen (k(obs)) were measured in ethylene glycol (EG) at different temperatures using nanosecond laser flash photolysis. Although a plot of the quenching rate constant k(obs) for RB triplet state vs oxygen concentration is linear at 20 degrees C, the oxygen dependence of k(obs) does not exhibit linearity but upward curvature at high temperatures from 130 to 140 degrees C. The upward curvature at high temperatures is not well-described by a kinetic scheme first postulated by Gijzeman et al., which is characterized by exciplex formation and a unimolecular dissociation of the exciplex to products, but instead by a more comprehensive mechanism involving a bimolecular dissociation in addition to a unimolecular one. The measurements of the oxygen dependence of k(obs) for RB triplet state at different temperatures yielded a reaction enthalpy for the exciplex formation of 150 kJ mol(-1). Due to the large exothermic reaction enthalpy, equilibrium was obtained for the exciplex at 20 degrees C even at low oxygen concentration and the bimolecular quenching by oxygen became the major dissociation process. The equilibrium attainment and bimolecular dissociation provide a linear oxygen dependence of k(obs) to all outward appearances. Therefore, linearity does not always mean that exciplex dissociation proceeds solely through a unimolecular mechanism.  相似文献   

19.
Rate constants kq for the quenching of the excited state of Ru(bipy)32+ by a series of viologen salts having different redox potential E12 have been determined in deaerated aqueous solutions at pH = 5 by laser flash photolysis. The kq values are found to decrease with increasing —E12 and to correlate with the reaction free-energy change ΔG. Such a correlation is shown to be consistent with the Rehm—Weller model for electron-transfer reactions.  相似文献   

20.
Ultrafast fluorescence quenching of flavin in flavodoxin from Megasphaera elsdenii was investigated by means of a fluorescence up-conversion method. Fluorescence lifetimes of flavodoxin from M. elsdenii were estimated to be tau(1) approximately 165 fs (0.97%) and tau(2) approximately 10 ps (0.03%). Correlation of photoinduced electron-transfer rates (k(ET)) with averaged distances (D(av)) between isoalloxazine and nearby tryptophan or tyrosine was examined and obtained an empirical equation of ln k(ET) vs D(av) by means of a nonlinear least-squares method using reported data together with flavodoxin from M. elsdenii. The values of D(av) were calculated from X-ray structures of the flavoproteins. The ln k(ET) was approximately linear at D(av) shorter than 7 A. The model free empirical equation was expressed as ln k(ET) = 29.7 + (-0.327 D(av) + 2.84 x 10(-5))/(0.698 - D(av)(2)). We also analyzed the observed values of ln k(ET) with Marcus theory, but could not obtain reasonable results. Our analysis suggests that the average distance, rather than the shortest (edge to edge) distance or interplanar angles between the aromatics rings, is the key factor in the process of the photoinduced electron transfer in these flavoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号