首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Silicon nanowires (SiNWs) with axial doping junctions were synthesized via the Au‐catalyzed vapor–liquid–solid growth method with the use of HCl. In this work, dopant profiling from three axially doped SiNWs with p–i, p–n and n–i–p junctions were investigated using both scanning electron microscopy (SEM) and scanning capacitance microscopy (SCM). It turns out that observed doping contrasts in SEM are also affected by the surface roughness and sample charging. In contrast, SCM allows us to delineate with sub‐10 nm resolution the electrical junctions and provides a relative value of the doping concentration in each segment of the NW. SCM clearly evidences the expected doping regions within these SiNWs thanks to the addition of HCl during the growth that strongly prevents shell overgrowth. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Micro- and nano-structural analyses of damage in bone   总被引:4,自引:0,他引:4  
Skeletal fractures represent a significant medical and economic burden for our society. In the US alone, age-related hip, spine, and wrist fractures accounted for more than $17 billion in direct health care costs in 2001. Moreover, skeletal fractures are not limited to the elderly; stress fractures and impact/trauma-related fractures are a significant problem in younger people also. Gaining insight into the mechanisms of fracture and how these mechanisms are modulated by intrinsic as well as extrinsic factors may improve the ability to define fracture risk and develop and assess preventative therapies for skeletal fractures. Insight into failure mechanisms of bone, particularly at the ultrastructural-level, is facilitated by the development of improved means of defining and measuring tissue quality. Included in these means are microscopic and spectroscopic techniques for the direct observation of crack initiation, crack propagation, and fracture behavior. In this review, we discuss microscopic and spectroscopic techniques, including laser scanning confocal microscopy (LSCM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopic imaging for visually observing microdamage in bone, and the current understanding of damage mechanisms derived from these techniques.  相似文献   

3.
In 1967, Coates discovered the electron channelling contrast of backscattered electrons (BSEs) in scanning electron microscopy, and by this the possibility to investigate arrangements of lattice defects in deformed microstructures of materials. Since that time, a straightforward development of the scanning electron microscopes as well as of the electron channelling contrast technique took place. Nowadays, the performance of scanning electron microscopes is high enough that the resolution of electron channelling contrast imaging (ECCI) micrographs is comparable with conventional bright field transmission electron microscopy (TEM) micrographs. In the first part of the present paper, a historical review on the development of the ECCI technique starting from its discovery more than 45 years ago up to the combination with other advanced methods of scanning electron microscopy like electron backscatter diffraction or high-resolution selected area channelling patterning in the last few years is given. Major important investigations using this technique for the visualization of individual lattice defects like stacking faults (SFs) and dislocations or dislocation arrangements are chronologically summarized. The second part demonstrates that nowadays, ECCI micrographs taken in high-resolution scanning electron microscopes can be called high-resolution ECCI (HR-ECCI). It is shown that the resolution of individual SFs and dislocations in the HR-ECCI micrographs is comparable to that of conventional TEM (about 15 nm defect image width). Furthermore, the paper is demonstrating that HR-ECCI micrographs can be obtained for various types of materials after different mechanical loadings and different grain sizes ranging from large grain size of 500 μm (cast steel) down to less than 2 μm (γ-TiAl).  相似文献   

4.
The combination of fluorescence microscopy and electron microscopy promises a deeper insight into the ultrastructural features of cell organelles, e.g., after drug administration. Both methods complement each other and provide, as a correlative approach, a keen insight into the fate of nanoparticles within the cell. Moreover, it represents a promising tool to determine alterations of the cellular environment as a response to particle uptake. However, the availability of suitable correlative markers is mandatory for such correlative approaches. In this contribution, the utilization of poly(ethylene imine) based metal–polymer hybrid particles labeled with small gold nanoparticles and Rhodamine B facilitating the observation of the particles by means of fluorescence as well as by transmission electron microscopy is suggested. Correlative light and electron microscopy is used to study uptake and intracellular fusion processes of endosomal/lysosomal structures.  相似文献   

5.
Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry(XRD), scanning electron microscopy(SEM), and atomic force microscopy(AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers’ microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar(1 bar = 105Pa). A considerable increase in surface microhardness(approximately by a factor of 2) is observed for longer duration(10 h) and 2-mbar pressure. Longer duration(10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.  相似文献   

6.
Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.  相似文献   

7.
单层FeSe/SrTiO3界面增强超导的发现为理解高温超导机理提供了一个新的途径,也为实现新的高温超导体开拓了新思路.本文通过在SrTiO3(001)表面高温沉积Mg进而沉积单层FeSe薄膜,制备出了FeSe/MgO双层/SrTiO3异质结.利用扫描隧道显微镜研究了异质结的电学及超导特性,观测到约14–15 meV的超导能隙,比体相FeSe超导能隙值增大了5–6倍,与K掺杂双层FeSe/SrTiO3的超导能隙值相当.这一结果可理解为能带弯曲造成的界面电荷转移和界面处电声耦合共同作用导致的超导增强.FeSe/MgO界面是继FeSe/TiO2之后的一个新界面超导体系,为研究界面高温超导机理提供了新载体.  相似文献   

8.
A mass of GaN nanowires has been successfully synthesized on Si(111) substrates by magnetron sputtering through ammoniating Ga2O3/Co films at 950℃. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscope and Fourier transformed infrared spectra are used to characterize the samples. The results demonstrate that the nanowires are of single-crystal GaN with a hexagonal wurtzite structure and possess relatively smooth surfaces. The growth mechanism of GaN nanowires is also discussed.  相似文献   

9.
蔡群  董树忠 《物理》1996,25(7):433-439
低能电子显微术是新发展起来的一种显微探测技术。它的特点是利用低能(1-30eV)电子的弹性背散射使表面实空间实时成像,具有高的横向(15nm)和纵向(原子级)分辩率,且易与低能电子衍射及其他电子显微术相结合。近年来它已有效地应用于金属和半导体表面的形貌观测、表面相变、吸附、反应及生长过程的研究。  相似文献   

10.
In this study, nitrophenol isomers were adsorbed on synthetic ammonium Y zeolite and the samples acquired were examined with infrared spectroscopy and scanning electron microscopy. The aim of the work is to investigate whether isomeric effects can be monitored after adsorption process. Theoretical calculations of isomers had been performed and the data acquired show that adsorption occurred via bonding from the sites of zeolite.  相似文献   

11.
Uniform cathode deposits (longer than 15 mm), containing multiwalled carbon nanotubes (MWNTs) inside, were produced by dc arc discharge evaporation with a computer-controlled feeder of a pure-carbon electrode without a metal catalyst in a He–H2 gas mixture. The purification of MWNTs was carried out to remove amorphous carbon and carbon nanoparticles. High-resolution transmission electron microscopy observations and Raman scattering studies show that the MWNTs possess a high crystallinity and a mean outermost diameter of ∼ ∼10 nm. It has been confirmed that the current density in the electron field emission from a purified MWNT mat can reach 77.92 mA/cm2, indicating that the purified MWNTs are a promising candidate electron source in a super high-luminance light-source tube or a miniature X-ray source.  相似文献   

12.
The Flavivirus genus is composed of many medically important viruses that cause high morbidity and mortality, which include Dengue and West Nile viruses. Various molecular and biochemical techniques have been developed in the endeavour to study flaviviruses. However, microscopy techniques still have irreplaceable roles in the identification of novel virus pathogens and characterization of morphological changes in virus-infected cells. Fluorescence microscopy contributes greatly in understanding the fundamental viral protein localizations and virus–host protein interactions during infection. Electron microscopy remains the gold standard for visualizing ultra-structural features of virus particles and infected cells. New imaging techniques and combinatory applications are continuously being developed to push the limit of resolution and extract more quantitative data. Currently, correlative live cell imaging and high resolution three-dimensional imaging have already been achieved through the tandem use of optical and electron microscopy in analyzing biological specimens. Microscopy techniques are also used to measure protein binding affinities and determine the mobility pattern of proteins in cells. This chapter will consolidate on the applications of various well-established microscopy techniques in flavivirus research, and discuss how recently developed microscopy techniques can potentially help advance our understanding in these membrane viruses.  相似文献   

13.
利用化学气相沉积法生长在金属衬底上的石墨烯薄膜,由于其尺寸的可控性和转移的便利性,被广泛用作各种透明电极.石墨烯薄膜的方块电阻是衡量其品质的重要指标之一,而石墨烯覆盖完全是保证薄膜拥有优良导电性能的基本前提.本文通过研究评估不确定度的分量,提出利用扫描电子显微镜像素计算微区和宏观覆盖度的方法.考虑到石墨烯薄膜覆盖区域与未覆盖区域边界的确定,以及晶畴数目的选取这两个因素对覆盖度测定造成的误差.通过微区有效扫描电子显微镜图像的确定、宏观石墨烯薄膜有效扫描电子显微镜图像的测量数目以及宏观石墨烯薄膜覆盖均匀性的表达,系统研究了化学气相沉积法生长在金属衬底上的石墨烯薄膜的微区覆盖度、宏观覆盖度和覆盖均匀性.该方法通过获得有限次微区扫描电子显微镜图像,不仅可以计算宏观石墨烯薄膜的覆盖度,还可以给出覆盖均匀性,既节省了测量时间,同时也能保证测量有效性.  相似文献   

14.
A fully aromatic poly(benzimidazole-imide) (PBI) containing triazole side units and amine-modified multi-wall carbon nanotube (MWCNT)/PBI composites were fabricated via a polymerization process of monomer reactants and solution mixing with ultrasonication excitation. The polymer and composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. According to the microscopic characterizations, the MWCNTs homogeneously dispersed in the composites. The mechanical properties of the composite films were also measured by tensile test. The test results evidently indicated that the Young’s modulus increased by about 60.0% at 1 wt% CNT loading, and further modulus growth was observed at higher filler loading. The composite films hold preferable thermal stability the same as the pure PBI. The improvement of the mechanical and thermal properties was attributed to the incorporation of the surface modified CNTs. For CNT-reinforced polymer composites, strong interfacial adhesion and uniform dispersion of CNTs are more crucial factors for improving such properties.  相似文献   

15.
We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new opportunities, for example the combination of nanometer resolution with Raman advances the analysis of sub‐diffraction‐sized particles. Further direct Raman analysis of FIB engineered samples enables in situ investigation of sample changes. The Raman microscope is an add‐on module to the electron microscope. The optical objective is brought into the sample chamber, and the laser source, and spectrometer are placed in a module attached onto and outside the chamber. We demonstrate the integrated Raman FIB SEM function with several experiments. First, correlative Raman and electron microscopy is used for the investigation of (sub‐)micrometer‐sized crystals. Different crystals are identified with Raman, and in combination with SEM the spectral information is combined with structurally visible polymorphs and particle sizes. Analysis of sample changes made with the ion beam is performed on (1) structures milled in a silicon substrate and (2) after milling with the FIB on an organic polymer. Experiments demonstrate the new capabilities of an integrated correlative Raman–FIB–SEM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
黎栋栋  周武 《物理学报》2017,66(21):217303-217303
二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.  相似文献   

17.
The crystallization process of Se77.5Te15Sb7.5 glass is studied by differential scanning calorimetry (DSC) technique under non-isothermal conditions at various heating rates. The crystallization parameters are deduced using different models. The validity of the Johnson–Mehl–Avrami (JMA) model to describe the crystallization process for the studied composition is investigated. Comparing experimental and calculated DSC curves indicate that the crystallization process of Se77.5Te15Sb7.5 glass cannot satisfactorily be described by the JMA model. In general, simulation results indicate that the Sestak–Berggren model is more suitable to describe the crystallization kinetics. The crystalline phases are identified using the X-ray diffraction technique and scanning electron microscopy.  相似文献   

18.
ABSTRACT

Microstructures of Cu-rich phases and NbC precipitated phases have been studied in a long time ageing austenitic stainless steel by high resolution scanning transmission electron microscopy. The interaction difference between the twins and the second phases found to be dependent on the nature of the precipitates. The Cu-rich phases were identified to be twinned at the twin boundary. Nevertheless, the NbC precipitates not only twinned at the twin boundary but also induced the twin boundary bypass them. A particle size dependence of the generation of misfit dislocations also was detected at interface between precipitates and the austenitic matrix.  相似文献   

19.
在传统共聚焦显微技术的基础上,图像扫描显微技术使用面阵探测器来代替单点探测器,结合虚拟数字针孔并利用像素重定位和解卷积图像重构算法将传统宽场显微镜的分辨率提高一倍,实现了高信噪比的超分辨共焦成像.但是,由于采用逐点扫描的方式,三维成像速度相对较慢,限制了其在活体样品成像中的应用.为了进一步提高图像扫描显微术的成像速度,本文提出了一种基于双螺旋点扩散函数工程的多焦点图像扫描显微成像方法和系统.在照明光路中,利用高速数字微镜器件产生周期分布的聚焦点阵对样品进行并行激发和快速二维扫描;在探测光路中,利用双螺旋相位片将激发点荧光信号的强度分布转换为双螺旋的形式;最终,利用后期数字重聚焦处理,从单次样品扫描数据中重构出多个样品层的超分辨宽场图像.在此基础上,利用搭建的系统分别对纤维状肌动蛋白和海拉细胞线粒体进行成像实验,证明了该方法的超分辨能力和快速三维成像能力.  相似文献   

20.
Meteorites provide precious clues about the formation of planets in the solar system. Here, an analytical method to study chondritic meteorites using low- and high-resolution micro-Raman spectroscopy is presented. An approach in mapping the distribution of mineral compositions of a sample is introduced by measuring ~104 Raman spectra along linear, micron-wide paths that traverse the sample to capture detail on small and large spatial scales (from micrometers to millimeters). To refine these analytical procedures, a well-defined chondrule and surrounding matrix of the carbonaceous chondrite Northwest Africa 3118 are analyzed. The morphology and elemental composition of the sample are also studied using scanning electron microscopy with energy-dispersive X-ray spectroscopy and creating composite maps with the images obtained by these techniques along the same Raman linear path. The Raman line scan maps of this sample show clear spatial segregation of constituents including pyroxene and olivine, both within and outside the chondrule. Graphitic carbon is also present and appears clustered in domains of a few hundred microns both in the matrix and in the central core of the chondrule. The results obtained with the scanning electron microscopy and energy-dispersive X-ray spectroscopy techniques show that iron is most abundant in the matrix surrounding the chondrule, while the chondrule is enhanced in silicon, magnesium, calcium, aluminum, and sodium. These findings provide a detailed identification of the elemental and mineralogical, spatial composition of the analyzed regions of Northwest Africa 3118.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号