首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis(4‐picoline‐κN)gold(I) dibromidoaurate(I), [Au(C6H7N)2][AuBr2], (I), crystallizes in the monoclinic space group P21/n, with two half cations and one general anion in the asymmetric unit. The cations, located on centres of inversion, assemble to form chains parallel to the a axis, but there are no significant contacts between the cations. Cohesion is provided by flanking anions, which are connected to the cations by short Au...Au contacts and C—H...Br hydrogen bonds, and to each other by Br...Br contacts. The corresponding chloride derivative, [Au(C6H7N)2][AuCl2], (II), is isotypic. A previous structure determination of (II), reported in the space group P with very similar axis lengths to those of (I) [Lin et al. (2008). Inorg. Chem. 47 , 2543–2551], might be identical to the structure presented here, except that its γ angle of 88.79 (7)° seems to rule out a monoclinic cell. No phase transformation of (II) could be detected on the basis of data sets recorded at 100, 200 and 295 K.  相似文献   

2.
3.
4.
The title complexes [μ‐(E)‐4,4′‐(ethene‐1,2‐diyl)­di­pyridine‐κ2N:N′]­bis­[halotris(4‐methyl­phenyl)­tin(IV)], [Sn2(C7H7)6X2(C12H10N2)], where halo is chloro (X = Cl) and bromo (X = Br) are isostructural. In both crystals, the mol­ecules lie on inversion centers, and there are voids of ca 80 Å3 that could, but apparently do not, accommodate water mol­ecules. The corresponding iodo structure (X = I) is almost, but not quite, isostructural with the other two compounds; when Br is changed to I, the length of the c axis decreases by more than 1 Å and the voids are no longer large enough to accomodate any solvent mol­ecule. The related complex [μ‐(E)‐4,4′‐(ethene‐1,2‐diyl)­di­pyridine‐κ2N:N′]­bis­[chloro­tri­phenyl­tin(IV)], [Sn2(C6H5)6Cl2(C12H10N2)], crystallizes in a related structure, but the mol­ecules lie on general rather than on special positions. The molecular structures of the four complexes are similar, but the conformation of the phenyl derivative is approximately eclipsed rather than staggered.  相似文献   

5.
叶欣  周惠琼  蒲金国  朱霞萍 《应用化学》2019,36(12):1462-1464
制备并表征了α-FeO(OH),探究了4种低相对分子质量有机酸(LMW)对α-FeO(OH)吸附As(Ⅲ)的影响,并阐明了机理。 单一和混合LMW对α-FeO(OH)吸附As(Ⅲ)均有抑制作用,4种LMW的影响大小顺序为:草酸(OA)>柠檬酸(CA)>乳酸(LA)、水杨酸(SA)。 混合LMW的影响为:OA会加剧CA对α-FeO(OH)吸附As(Ⅲ)的影响,而SA几乎不起作用。 当ρ(As(Ⅲ))较低,LMW通过与α-FeO(OH)的静电引力、与α-FeO(OH)表面的铁离子形成配合物、生成沉淀从而影响α-FeO(OH)对As(Ⅲ)的吸附;当ρ(As(Ⅲ))较高,LMW还通过阻碍As(Ⅲ)在α-FeO(OH)上的扩散和沉淀作用产生影响。 实验结果为土壤中As(Ⅲ)的迁移转化、污染治理提供技术支撑。  相似文献   

6.
7.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N CH—CH N—(t-Bu)]NiBr2(C1), [C6H5—N C(Me)—C(Me) N—C6H5]NiBr2(C2), [(2,6-C6H3(Me)2)—N C(Me)—C·(Me) N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N C(An)—C(An) N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4), 在甲基铝氧烷(MAO)作用下, 对甲基丙烯酸甲酯(MMA)进行催化聚合. 以C2为模型催化剂系统研究了Al/Ni摩尔比、 单体浓度、 聚合温度、 聚合时间和反应溶剂对催化活性及聚合物分子量的影响. 在较适合的聚合条件(催化剂用量为1.6 μmol, Al/Ni摩尔比为800, MMA浓度为2.9 mol/L, 甲苯为溶剂, 聚合温度为 60 ℃, 聚合时间为4 h)下, 讨论了催化剂结构对催化活性和聚合物分子量的影响. 研究发现, 催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA). 催化剂结构中空间位阻增大导致催化活性降低, 空间位阻最小的 C1催化活性最高[达107.8 kg/(mol Ni·h)]; 而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h). 催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加. C2催化活性为62.5 kg/(mol Ni·h), 所得聚合物的分子量为5.0×104; 而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h), 并得到更高分子量的聚合物(7.6×104).  相似文献   

8.
Recently described and fully characterized trinuclear rhodium‐hydride complexes [{Rh(PP*)H}32‐H)33‐H)][anion]2 have been investigated with respect to their formation and role under the conditions of asymmetric hydrogenation. Catalyst–substrate complexes with mac (methyl (Z)‐ N‐acetylaminocinnamate) ([Rh(tBu‐BisP*)(mac)]BF4, [Rh(Tangphos)(mac)]BF4, [Rh(Me‐BPE)(mac)]BF4, [Rh(DCPE)(mac)]BF4, [Rh(DCPB)(mac)]BF4), as well as rhodium‐hydride species, both mono‐([Rh(Tangphos)‐ H2(MeOH)2]BF4, [Rh(Me‐BPE)H2(MeOH)2]BF4), and dinuclear ([{Rh(DCPE)H}22‐H)3]BF4, [{Rh(DCPB)H}22‐H)3]BF4), are described. A plausible reaction sequence for the formation of the trinuclear rhodium‐hydride complexes is discussed. Evidence is provided that the presence of multinuclear rhodium‐hydride complexes should be taken into account when discussing the mechanism of rhodium‐promoted asymmetric hydrogenation.  相似文献   

9.
10.
11.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

12.
β‐Lactams are very important structural motifs because of their broad biological activities as well as their propensity to engage in ring‐opening reactions. Transition‐metal‐catalyzed C H functionalizations have emerged as strategy enabling yet uncommon highly efficient disconnections. In contrast to the significant progress of Pd0‐catalyzed C H functionalization for aryl–aryl couplings, related reactions involving the formation of saturated C(sp3) C(sp3) bonds are elusive. Reported here is an asymmetric C H functionalization approach to β‐lactams using readily accessible chloroacetamide substrates. Important aspects of this transformation are challenging C(sp3) C(sp3) and strain‐building reductive eliminations to for the four‐membered ring. In general, the β‐lactams are formed in excellent yields and enantioselectivities using a bulky taddol phosphoramidite ligand in combination with adamantyl carboxylic acid as cocatalyst.  相似文献   

13.
14.
Why Pentose-And Not Hexose-Nucleic Acids? Part III. Oligo(2′,3′-dideoxy-β-D -glucopyranosyl)nucleotides. (‘Homo-DNA’): Base-Pairing Properties
  • 1 Summary in collaboration with Prof. Dr. C. E. Wintner, Haverford College, Haverford, PA 19041-1392.
  • The paper presents results of a comprehensive investigation on the pairing properties of homo-DNA oligonucleotides, the preparation of which has been described in Part II of this series [2]. The investigation was carried out by using established methods described in the literature for the characterization of oligonucleotides in the natural series, such as determination of melting temperatures of oligonucleotide duplexes by temperature-dependent of melting temperatures, determination of pairing stoichiometry by ratio-dependent UV spectroscopy of binary mixtures of pairing partners, temperature-dependent CD spectroscopy, gel electrophoresis under non-denaturing conditions, and – in selected cases – 1H – and31P-NMR spectroscopy. The systematic comparison of the paring properties of homo-DNA oligonucleotides with corresponding DNA nucleotides (up to dodecamers) indicates that homo-DNA is a highly efficient, autonomous, artificial pairing system with a pairing behavior that is in part similar to, but also, in part, strikingly different from, the pairing behavior of DNA. The pairing properties established so far are listed below in a manner that reflects the sequence of subtitles in Chapt.2 of the text; they were determined under the conditions: H2O, 0.15M NaCl, 0.01M Tris-HCl buffer, pH 7, oligonucleotide concentrations in the μM range, 1:1 ratio of single strands in the case of non-selfcompementary sequences.  相似文献   

    15.
    A remote 4J(F,H) coupling (F? C(α)? C(O)? N? H) of up to 4.2 Hz in α‐fluoro amides with antiperiplanar arrangement of the C? F and the C?O bonds (dihedral angle F? C? C?O ca. 180°) confirms that previous NMR determinations, using the XPLOR‐NIH procedure, of the secondary structures of β‐peptides containing β3hAla(αF) and β3hAla(αF2) residues were correct. In contrast, molecular‐dynamics (MD) simulations, using the GROMOS program with the 45A3 force field, led to an incorrect conclusion about the relative stability of secondary structures of these β‐peptides. The problems encountered in NMR analyses and computations of the structures of backbone‐F‐substituted peptides are briefly discussed.  相似文献   

    16.
    Rh2(OAc)4‐Catalyzed decomposition of diazo esters in the presence of perfluoroalkyl‐ or perfluoroaryl‐substituted silyl enol ethers smoothly provided the corresponding alkyl 2‐siloxycyclopropanecarboxylates in very good yields. The generated donor? acceptor cyclopropanes are equivalents of γ‐oxo esters, which we demonstrated by their one‐pot transformations to yield fluorine‐containing heterocycles. A reductive procedure selectively afforded perfluoroalkyl‐substituted γ‐hydroxy esters or γ‐lactones. The treatment of the donor? acceptor cyclopropanes with hydrazine or phenylhydrazine afforded a series of perfluoroalkyl‐ and perfluoroaryl‐substituted 4,5‐dihydropyridazin‐3(2H)‐ones.  相似文献   

    17.
    A straightforward high‐yield synthetic route to the cationic hydrido‐arene complexes [RuH(η6‐arene)(binap or MeO biphep)](CF3SO3), with a variety of arenes containing both donor and acceptor substituents, is described. 13C‐NMR Data for these complexes are reported. Several of these Ru‐complexes have been used as transfer‐hydrogenation catalysts in the reduction of acetophenone.  相似文献   

    18.
    19.
    The first example of the stereoselective synthesis of (Z)‐ and (E)‐allyl aryl sulfides and selenides from Baylis? Hillman acetates under neutral conditions in H2O by supramolecular catalysis involving β‐cyclodextrin is reported. β‐Cyclodextrin can be recovered and reused. The reaction is very efficient in providing allyl aryl sulfides and selenides in good‐to‐excellent yields with clean reaction profiles under mild reaction conditions.  相似文献   

    20.
    Reactions of the unsymmetric dicopper(II) peroxide complex [CuII2(μ‐η11‐O2)(m‐XYLN3N4)]2+ ( 1 O2 , where m‐XYL is a heptadentate N‐based ligand), with phenolates and phenols are described. Complex 1 O2 reacts with p‐X‐PhONa (X=MeO, Cl, H, or Me) at ?90 °C performing tyrosinase‐like ortho‐hydroxylation of the aromatic ring to afford the corresponding catechol products. Mechanistic studies demonstrate that reactions occur through initial reversible formation of metastable association complexes [CuII2(μ‐η11‐O2)(p‐X‐PhO)(m‐XYLN3N4)]+ ( 1 O2 ?X‐PhO) that then undergo ortho‐hydroxylation of the aromatic ring by the peroxide moiety. Complex 1 O2 also reacts with 4‐X‐substituted phenols p‐X‐PhOH (X=MeO, Me, F, H, or Cl) and with 2,4‐di‐tert‐butylphenol at ?90 °C causing rapid decay of 1 O2 and affording biphenol coupling products, which is indicative that reactions occur through formation of phenoxyl radicals that then undergo radical C? C coupling. Spectroscopic UV/Vis monitoring and kinetic analysis show that reactions take place through reversible formation of ground‐state association complexes [CuII2(μ‐η11‐O2)(X‐PhOH)(m‐XYLN3N4)]2+ ( 1 O2 ?X‐PhOH) that then evolve through an irreversible rate‐determining step. Mechanistic studies indicate that 1 O2 reacts with phenols through initial phenol binding to the Cu2O2 core, followed by a proton‐coupled electron transfer (PCET) at the rate‐determining step. Results disclosed in this work provide experimental evidence that the unsymmetric 1 O2 complex can mediate electrophilic arene hydroxylation and PCET reactions commonly associated with electrophilic Cu2O2 cores, and strongly suggest that the ability to form substrate?Cu2O2 association complexes may provide paths to overcome the inherent reactivity of the O2‐binding mode. This work provides experimental evidence that the presence of a H+ completely determines the fate of the association complex [CuII2(μ‐η11‐O2)(X‐PhO(H))(m‐XYLN3N4)]n+ between a PCET and an arene hydroxylation reaction, and may provide clues to help understand enzymatic reactions at dicopper sites.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号