首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
许哲  周宁  许旭  许杏祥 《分析化学》2007,35(7):1043-1046
采用高效液相色谱法在大环糖肽抗生素键合固定相手性柱上拆分了卡巴拉汀(Rivastigmine)对映体。考察了甲醇∶乙酸∶三乙胺流动相体系中乙酸和三乙胺的浓度和比例、有机酸的种类、分离温度及流动相流速对拆分结果的影响。选定的色谱条件为:Chirobiotic V手性柱(250mm×4.6mmi.d.,5μm),流动相为V(甲醇)∶V(乙酸)∶V(三乙胺)=100∶0.02∶0.01,柱温5℃,流速0.5mL/min,检测波长274nm。在柱温5~30℃范围内测定lnα与1/T呈线性关系:lnα=ΔΔH0/RT ΔΔR0/R。  相似文献   

2.
本文利用梯度洗脱进行溶剂强度的优化,确定分离一组化合物的最佳二元流动相体系,即甲醇-水、四氢呋喃-水和乙腈-水,将这三种二元流动相的最佳组成作为溶剂选择性三角形的三个顶点,利用ORM法对流动相进行优化选择,得到流动相的最佳组成和配比为V乙腈:V四氢呋喃:V水=33.75:33:33.25,有效地分离了六种二茂铁取代二氢...  相似文献   

3.
α-吡咯烷酮乙酸甲酯的H P LC测定   总被引:3,自引:0,他引:3  
建立了测定α -吡咯烷酮乙酸甲酯的反相高效液相色谱法。采用的流动相为甲醇 -水 -四氢呋喃 (体积比30∶68∶2) ,流动相pH3.0,柱温45℃ ,流量梯度洗脱,检测波长208nm。在该条件下α -吡咯烷酮乙酸甲酯与相关物质的色谱峰分离完全,测定α -吡咯烷酮乙酸甲酯 ,含量为90 %~94 %时SD为0.59 %~0.72 % ,RSD为0.65 %~0.77 % ,与化学法相比 ,测定结果一致。  相似文献   

4.
高效液相色谱分析法测定色氨酸对映体   总被引:3,自引:3,他引:0  
采用高效液相色谱法,以手性冠醚Crownpak CR( )为固定相、高氯酸溶液/甲醇混合溶液为流动相,成功地实现了色氨酸(Trp)对映体的色谱分离.考察了流动相中甲醇含量、流量和柱温等因素对分离效果的影响.研究表明,适当提高流动相中的甲醇含量、降低流动相流量、降低柱温可以有效地提高分离度.另一方面,提高流动相中的甲醇含量、提高流动相流量、升高柱温可以显著地缩短样品的保留时间.确定了一种最佳分析分离条件,即流动相为甲醇∶高氯酸溶液=15∶85(V/V),流动相流量0.8 mL/min,柱温20℃,波长220 nm,在此条件下进行色谱分离,样品的保留时间小于12 min,分离度达到2.06.该方法具有快速、高效、准确和精密度高等优点.  相似文献   

5.
提出了高效液相色谱法测定润燥止痒胶囊中大黄素和大黄素甲醚含量的方法。样品经甲醇-盐酸(10+0.3)混合溶液加热提取水解30min,采用Hypersil ODS 2C18色谱柱为分离柱,以不同体积比混合的甲醇和磷酸(0.1+99.9)溶液为流动相进行梯度洗脱,检测波长为254nm。大黄素和大黄素甲醚的平均回收率分别为100.2%和99.7%。  相似文献   

6.
寿旦  戴诗文  章建民  李洪玉  俞忠明 《色谱》2008,26(5):637-639
采用微管液相色谱法同时测定白术中的白术内酯Ⅲ、白术内酯Ⅰ和苍术酮。采用美国Micro-tech Ultra plusⅡTM微管柱通用型二元梯度高效液相色谱仪和Microsil C18微管色谱柱(150 mm×1.0 mm),以甲醇-乙腈-水(A相体积比为90∶5∶5;B相体积比为55∶5∶40)为流动相,梯度洗脱,流速50 μL/min,在220 nm波长下检测。在上述色谱条件下,3种组分分离良好,在相应的进样质量范围内具有良好的线性关系。白术内酯Ⅲ、Ⅰ和苍术酮的加标回收率分别为96.86%,97.13%和98.06%;相对标准偏差分别为1.63%,1.31%和0.39%。该法简便、快捷,能够用于白术的质量控制。  相似文献   

7.
以羧甲基-β-环糊精(CM-β-CD)作为手性流动相添加剂,采用高效液相色谱法(HPLC)拆分愈创甘油醚对映体。考察了添加剂的种类及浓度、有机修饰剂的种类及含量、流动相pH值、三乙胺体积浓度和流速对拆分的影响。优化的色谱分离条件为:C_(18)色谱柱,流动相为含0.5 g/L CM-β-CD的甲醇-乙腈-水(体积比为15∶70∶15),流速为0.2 mL/min,pH=4.26,三乙胺体积浓度为0.1%,紫外检测波长为226 nm。结果表明:在上述条件下,愈创甘油醚对映体的分离度R_s为1.54。  相似文献   

8.
李瑞江  邹汉法  张玉奎 《色谱》1996,14(5):334-339
考察了大气污染物中醛酮化合物在甲醇/水、乙腈/水和四氢呋喃/水三个二元流动相体系中的液相色谱保留行为,并对醛酮化合物在各体系中的选择性差异进行了考察。在此基础上选择最佳的流动相体系,应用“均匀-重复设计优化法”对醛酮样品进行多元等度分离条件的优化,获得了醛酮样品最优的液相色谱分离条件。  相似文献   

9.
李艳莉  古国榜  钟理  胡希明  苏坤明 《分析化学》2001,29(11):1280-1283
用经典硅胶柱色谱法对石油亚砜 (PSO)进行预分离。PSO被分成 4个馏分 (分别记为PSO1,PSO2 ,PSO3和PSO4)。所用的流动相及洗脱顺序 :苯、二氯甲烷、甲醇 二氯甲烷 (1∶1体积比 )、甲醇。经预分离后 ,PSO中的亚砜成分主要富集在馏分PSO3和PSO2中。用高效制备液相色谱法对这两馏分作进一步的分离和纯化。PSO2的色谱条件是 :色谱柱 μ BondapakC1 85 7mm× 30 0mm ;流动相为二氯甲烷、环己烷、甲醇混合液 ,收集经纯化后的组分PSO2g2 2 ;PSO3被分离为 7个馏分 ,其色谱条件为 :色谱柱μ BondapakC1 85 7mm× 30 0mm ;流动相为 70 %~ 10 0 %甲醇 水 ;梯度洗脱其流量为 80mL min ;进样量为80mL 次 (PSO3用 70 %甲醇 水稀释 10倍 )。取其中较纯的馏分PSO3c ,PSO3e ,PSO3g作进一步的色谱纯化 ,色谱条件为C1 8半制备色谱柱 7.8mm× 30 0mm ;流速 :2 0mL min ;流动相 :甲醇 水 70∶ 30 ,V/V(PSO3c)″80∶2 0 ,V V(PSO3e) ;85∶15 ,V V(PSO3g) ;检测器UV 2 5 4nm  相似文献   

10.
唑来膦酸及其有关化合物的反相离子对高效液相色谱分离   总被引:6,自引:0,他引:6  
张晓青  蒋晔  徐智儒 《色谱》2004,22(4):428-430
采用反相离子对高效液相色谱法研究了唑来膦酸及其有关化合物的色谱分析与分离方法。优化的分离条件:以Hypersil C8柱为固定相,以甲醇-5 mmol/L磷酸二氢钠缓冲液(含6 mmol/L四丁基溴化铵溶液,用氢氧化钠溶液调节pH至7.0)(体积比为20∶80)为流动相,等度洗脱,流速为1.0 mL/min,紫外检测波长为220 nm,柱温为室温。在该色谱条件下,唑来膦酸与有关化合物(包括其合成过程中残余的原料咪唑乙酸和其他氧化分解产物)的分离良好,与保留时间最接近的杂质峰的分离度大于2.5。该方法不需进  相似文献   

11.
A new mathematical treatment concerning the gradient elution in reversed-phase liquid chromatography when the volume fraction psi of an organic modifier in the water-organic mobile phase varies linearly with time is presented. The experimental ln k versus psi curve, where k is the retention factor under isocratic conditions in a binary mobile phase, is subdivided into a finite number of linear portions and the solute gradient retention time tR is calculated by means of an analytical expression arising from the fundamental equation of gradient elution. The validity of the proposed analytical expression and the methodology followed for the calculation of tR was tested using eight catechol-related solutes with mobile phases modified by methanol or acetonitrile. It was found that in all cases the accuracy of the predicted gradient retention times is very satisfactory because it is the same with the accuracy of the retention times predicted under isocratic conditions. Finally, the above method for estimating gradient retention times was used in an optimisation algorithm, which determines the best variation pattern of psi that leads to the optimum separation of a mixture of solutes at different values of the total elution time.  相似文献   

12.
郝卫强  刘丽娟  沈巧银 《色谱》2021,39(1):10-14
谱带压缩效应是梯度洗脱区别于等度洗脱的重要特征。经典的范德姆特(van Deemter)理论塔板高度方程基于等度洗脱推导得到,因此不能对谱带压缩效应进行描述。在梯度洗脱中,保留因子(k)会随流动相组成(φ)的改变而发生变化,这就使得对梯度洗脱机理的研究要比等度洗脱复杂许多。该文对近10年来谱带压缩效应的研究进展,特别是溶剂强度模型(即描述ln kφ关系的数学表达式)的非线性特征对谱带压缩因子(G)的影响进行了述评,指出为了更好地认识谱带压缩效应需要将这种非线性因素考虑在内。  相似文献   

13.
Retention models considering simultaneously ternary mobile phase organic contents and column temperature (T) were developed by a direct combination of equations expressing separately the dependence of the retention upon each of these factors. Thus, a combination of a linear dependence of the logarithm of the solute retention factor, ln k (T), against 1/T, i.e. ln k (T) = a + b/T, and of either a linear or a quadratic dependence of ln k upon the compositions of a binary mobile phase, gave two different expressions for the logarithm of the solute retention factor in terms of both temperature and organic contents in the ternary mobile phase. The effectiveness of the above models was tested in the prediction of isothermal retention of a mixture of four macrolide antibiotics under ternary isocratic and gradient elution conditions using mobile phases modified by methanol and acetonitrile. The limiting case of using ternary eluents with constant ratio of the concentrations of the two organic modifiers was also tested.  相似文献   

14.
Dias NC  Nawas MI  Poole CF 《The Analyst》2003,128(5):427-433
The solvation parameter model is used to identify suitable chromatographic models for estimating the octanol-water partition coefficient for neutral compounds of varied structure by reversed-phase liquid chromatography. The stationary phase Supelcosil LC-ABZ with methanol-water mobile phases affords a series of suitable correlation models for estimating the octanol-water partition coefficient (log KOW) under isocratic and gradient elution conditions. Isocratic separations with mobile phase compositions containing from about 25 to 40% (v/v) methanol provide the most accurate results for log KOW values in the range -0.1 to 4.0. Gradient separations programmed from 5 to 100% (v/v) methanol are suitable for faster separations of compounds with large log KOW values. The standard error in the estimate for the regression models of the predicted log KOW values against literature values are 0.135 log units for the 30% (v/v) methanol-water isocratic system and 0.263 log units for the methanol-water gradient system. Isocratic retention factors predicted from two gradient separations with gradient times of 15 and 45 min afford a poorer fit for the correlation models between log KOW and the estimated retention factors than that of either the above isocratic and gradient models. Plots of the retention factor (log k) as a function of mobile phase composition are generally non-linear. Values of log kw obtained by non-linear extrapolation to a volume fraction of 0% (v/v) methanol do not afford a useful model for estimating log KOW.  相似文献   

15.
The Reversed-phase (RP) gradient elution chromatography of nociceptin/orphanin FQ (N/OFQ), a neuropeptide with many biological effects, has been modeled under linear and non-linear conditions. In order to do this, the chromatographic behavior has been studied under both linear and nonliner conditions under isocratic mode at different mobile phase compositions--ranging from 16 to 19% (v/v) acetonitrile (ACN) in aqueous trifluoracetic acid (TFA) 0.1% (v/v)-on a C-8 column. Although the range of mobile phase compositions investigated was quite narrow, the retention factor of this relatively small polypeptide (N/OFQ is a heptadecapeptide) has been found to change by more than 400%. In these conditions, gradient operation resulted thus to be the optimum approach for non-linear elution. As the available amount of N/OFQ was extremely reduced (only a few milligrams), the adsorption isotherms of the peptide, at the different mobile phase compositions examined, have been measured through the so-called inverse method (IM) on a 5 cm long column. The adsorption data at different mobile phase compositions have been fitted to several models of adsorption. The dependence of the isotherm parameters on the mobile phase composition was modeled by using the linear solvent strength (LSS) model and a generalized Langmuir isotherm that includes the mobile phase composition dependence. The overloaded gradient separation of N/OFQ has been modeled by numerically solving the equilibrium-dispersive (ED) model of chromatography under a selected gradient elution mode, on the basis of the previously determined generalized Langmuir isotherm. The agreement between theoretical calculations and experimental overloaded band profiles appeared reasonably accurate.  相似文献   

16.
Retention for a varied group of compounds on an immobilized artificial membrane column (IAM PC DD2) with a methanol-water mobile phase is shown to fit a second-order model for the retention factor (log k) as a function of the volume fraction of organic solvent. The numerical value of the intercept obtained by linear extrapolation to zero organic solvent (log k(w)) is shown to depend on the range of mobile phase composition used for the extrapolation. Each series of intercepts so obtained represents a different hypothetical distribution system as identified by the system constants of the solvation parameter model. Although a linear model is a poor fit for isocratic retention data, the linear solvent strength gradient model provides a reasonable estimate of isocratic retention factor values that are (slightly) larger than experimental values, but provide the same chemical information for the system. These preliminary results suggest that gradient elution may prove to be a rapid and useful method for creating system maps for column characterization and method development. In this work a system map is provided for methanol-water compositions from 0 to 60% (v/v) methanol and additional system constants for acetonitrile-water compositions containing 20 and 30% (v/v) acetonitrile. It is shown that the main factors contributing to retention on the IAM PC DD2 column are favorable cavity formation and dispersion interactions, electron lone pair interactions and the hydrogen-bond basicity of the sorbent. The latter feature more than any other distinguishes the IAM column from conventional chemically bonded phases. Interactions of a dipole-type (weakly) and inability to compete with the mobile phase as a hydrogen-bond acid reduce retention. A comparison of system constant ratios is used to demonstrate that the retention properties of the IAM column are not easily duplicated by conventional chemically bonded phases. The retention characteristics of the IAM column, however, are strongly correlated with the retention properties of pseudostationary phases used for micellar electrokinetic chromatography, which provide a suitable alternative to IAM columns for physical property estimations. By the same comparative method it is shown that retention on the IAM column possesses some similarity to biomembrane absorption processes, allowing suitable correlation models to be developed for the estimation of certain biopartitioning properties.  相似文献   

17.
The fundamental equations and conditions for linear and stepwise gradient elution in reversed-phase liquid chromatography are applied to a mixture of amino acids in their underivatized form in aqueous mobile phases modified by 2-propanol, acetonitrile or methanol for examining column equilibration effects. It was found in all cases systematic deviations between experimental and calculated retention times, which are prominent in 2-propanol, reduced in acetonitrile and practically negligible in methanol. These deviations appear within a chromatogram just after the first change in the composition of the mobile phase reaches the detector and last ca. 5 min, where the magnitude of errors reduces exponentially with time. Based on these observations we propose a simple way to correct the calculated from the gradient elution theory retention times of sample solutes. The origin of the discrepancies between theory and experiment as well as their impact on the resolution is also discussed.  相似文献   

18.
The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed‐phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous‐organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications.  相似文献   

19.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

20.
孙小丽  郝卫强  王俊德  狄斌  陈强  庄韦  俞强  张培培 《色谱》2013,31(8):753-757
根据前期得到的梯度液相色谱保留时间计算公式,在不指定溶剂强度模型形式的前提下,探讨了梯形梯度洗脱的一些特点。对于溶质在梯形梯度坡度上流出时的情形,推导得到溶质流出色谱柱所对应的流动相组成(φR)随梯度斜率(B)变化的表达式。该公式表明,在该情形中φR将会随着B值的增加而增加。对于溶质在梯形梯度最后一个等度区间流出时的情形,如果初始和终止流动相组成保持不变而仅有梯度的斜率发生变化时,从理论上证明了溶质保留时间(tR)与梯度斜率的倒数(1/B)之间呈线性关系。实验中以C18色谱柱为固定相,甲醇-水为流动相,联苯为样品,测定了不同流动相组成以及梯形梯度条件下的保留时间,所得到的实验值与理论值吻合,从而验证了理论方法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号