首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Block Krylov subspace methods (KSMs) comprise building blocks in many state‐of‐the‐art solvers for large‐scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov subspace methods provide a major reduction in iteration counts over polynomial block KSMs, they also require reliable solvers for the coefficient matrices, and these solvers are often iterative methods themselves. It is not hard to devise scenarios in which the available memory, and consequently the dimension of the Krylov subspace, is limited. In such scenarios for linear systems and eigenvalue problems, restarting is a well‐explored technique for mitigating memory constraints. In this work, such restarting techniques are applied to polynomial KSMs for matrix equations with a compression step to control the growing rank of the residual. An error analysis is also performed, leading to heuristics for dynamically adjusting the basis size in each restart cycle. A panel of numerical experiments demonstrates the effectiveness of the new method with respect to extended block KSMs.  相似文献   

2.
In this paper, we first give a result which links any global Krylov method for solving linear systems with several right-hand sides to the corresponding classical Krylov method. Then, we propose a general framework for matrix Krylov subspace methods for linear systems with multiple right-hand sides. Our approach use global projection techniques, it is based on the Global Generalized Hessenberg Process (GGHP) – which use the Frobenius scalar product and construct a basis of a matrix Krylov subspace – and on the use of a Galerkin or a minimizing norm condition. To accelerate the convergence of global methods, we will introduce weighted global methods. In these methods, the GGHP uses a different scalar product at each restart. Experimental results are presented to show the good performances of the weighted global methods. AMS subject classification 65F10  相似文献   

3.
A direct as well as iterative method (called the orthogonally accumulated projection method, or the OAP for short) for solving linear system of equations with symmetric coefficient matrix is introduced in this paper. With the Lanczos process the OAP creates a sequence of mutually orthogonal vectors, on the basis of which the projections of the unknown vectors are easily obtained, and thus the approximations to the unknown vectors can be simply constructed by a combination of these projections. This method is an application of the accumulated projection technique proposed recently by the authors of this paper, and can be regarded as a match of conjugate gradient method (CG) in its nature since both the CG and the OAP can be regarded as iterative methods, too. Unlike the CG method which can be only used to solve linear systems with symmetric positive definite coefficient matrices, the OAP can be used to handle systems with indefinite symmetric matrices. Unlike classical Krylov subspace methods which usually ignore the issue of loss of orthogonality, OAP uses an effective approach to detect the loss of orthogonality and a restart strategy is used to handle the loss of orthogonality. Numerical experiments are presented to demonstrate the efficiency of the OAP.  相似文献   

4.
We consider the use of a class of constraint preconditioners for the application of the Krylov subspace iterative method to the solution of large nonsymmetric, indefinite linear systems. The eigensolution distribution of the preconditioned matrix is determined and the convergence behavior of a Krylov subspace method such as GMRES is described. The choices of the parameter matrices and the implementation of the preconditioning step are discussed. Numerical experiments are presented. This work is supported by NSFC Projects 10171021 and 10471027.  相似文献   

5.
For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [\emph{GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010)}, pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.  相似文献   

6.
潘春平 《计算数学》2022,44(4):481-495
本文针对求解大型稀疏非Hermitian正定线性方程组的HSS迭代方法,利用迭代法的松弛技术进行加速,提出了一种具有三个参数的超松弛HSS方法(SAHSS)和不精确的SAHSS方法(ISAHSS),它采用CG和一些Krylov子空间方法作为其内部过程,并研究了SAHSS和ISAHSS方法的收敛性.数值例子验证了新方法的有效性.  相似文献   

7.
基于交替投影算法求解单变量线性约束矩阵方程问题   总被引:2,自引:1,他引:1  
研究如下线性约束矩阵方程求解问题:给定A∈R~(m×n),B∈R~(n×p)和C∈R~(m×p),求矩阵X∈R(?)R~(n×n)"使得A×B=C以及相应的最佳逼近问题,其中集合R为如对称阵,Toeplitz阵等构成的线性子空间,或者对称半(ε)正定阵,(对称)非负阵等构成的闭凸集.给出了在相容条件下求解该问题的交替投影算法及算法收敛性分析.通过大量数值算例说明该算法的可行性和高效性,以及该算法较传统的矩阵形式的Krylov子空间方法(可行前提下)在迭代效率上的明显优势,本文也通过寻求加速技巧进一步提高算法的收敛速度.  相似文献   

8.
刘瑶宁 《计算数学》2022,44(2):187-205
一类空间分数阶扩散方程经过有限差分离散后所得到的离散线性方程组的系数矩阵是两个对角矩阵与Toeplitz型矩阵的乘积之和.在本文中,对于几乎各向同性的二维或三维空间分数阶扩散方程的离散线性方程组,采用预处理Krylov子空间迭代方法,我们利用其系数矩阵的特殊结构和具体性质构造了一类分块快速正则Hermite分裂预处理子.通过理论分析,我们证明了所对应的预处理矩阵的特征值大部分都聚集于1的附近.数值实验也表明,这类分块快速正则Hermite分裂预处理子可以明显地加快广义极小残量(GMRES)方法和稳定化的双共轭梯度(BiCGSTAB)方法等Krylov子空间迭代方法的收敛速度.  相似文献   

9.
The concept of a representative spectrum is introduced in the context of Newton‐Krylov methods. This concept allows a better understanding of convergence rate accelerating techniques for Krylov‐subspace iterative methods in the context of CFD applications of the Newton‐Krylov approach to iteratively solve sets of non‐linear equations. The dependence of the representative spectrum on several parameters such as mesh, Mach number or discretization techniques is studied and analyzed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

10.
求解PageRank问题的重启GMRES修正的多分裂迭代法   总被引:1,自引:1,他引:0       下载免费PDF全文
PageRank算法已经成为网络搜索引擎的核心技术。针对PageRank问题导出的线性方程组,首先将Krylov子空间方法中的重启GMRES(generalized minimal residual)方法与多分裂迭代(multi-splitting iteration,MSI)方法相结合,提出了一种重启GMRES修正的多分裂迭代法;然后,给出了该算法的详细计算流程和收敛性分析;最后,通过数值实验验证了该算法的有效性。  相似文献   

11.
A deflated restarting Krylov subspace method for approximating a function of a matrix times a vector is proposed. In contrast to other Krylov subspace methods, the performance of the method in this paper is better. We further show that the deflating algorithm inherits the superlinear convergence property of its unrestarted counterpart for the entire function and present the results of numerical experiments.  相似文献   

12.
We consider the task of computing solutions of linear systems that only differ by a shift with the identity matrix as well as linear systems with several different right-hand sides. In the past, Krylov subspace methods have been developed which exploit either the need for solutions to multiple right-hand sides (e.g. deflation type methods and block methods) or multiple shifts (e.g. shifted CG) with some success. In this paper we present a block Krylov subspace method which, based on a block Lanczos process, exploits both features—shifts and multiple right-hand sides—at once. Such situations arise, for example, in lattice quantum chromodynamics (QCD) simulations within the Rational Hybrid Monte Carlo (RHMC) algorithm. We present numerical evidence that our method is superior compared to applying other iterative methods to each of the systems individually as well as, in typical situations, to shifted or block Krylov subspace methods.  相似文献   

13.
Several Krylov subspace iterative methods have been proposed for the approximation of the solution of general non‐symmetric linear systems. Odir is such a method. Here we study the restarted version of Odir for non‐symmetric indefinite linear systems and we prove convergence under certain conditions on the matrix of coefficients. These results hold for all the restarted Krylov methods equivalent to Odir. We also introduce a new truncated Odir method which is proved to converge for a large class of non‐symmetric indefinite linear systems. This new method requires one‐half of the storage of the standard Odir. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The restarted FOM method presented by Simoncini[7]according to the natural collinearity of all residuals is an efficient method for solving shifted systems,which generates the same Krylov subspace when the shifts are handled simultaneously.However,restarting slows down the convergence.We present a practical method for solving the shifted systems by adding some Ritz vectors into the Krylov subspace to form an augmented Krylov subspace. Numerical experiments illustrate that the augmented FOM approach(restarted version)can converge more quickly than the restarted FOM method.  相似文献   

15.
One of the disadvantages of Krylov subspace iterative methods is the possibility of breakdown. This occurs when it is impossible to get the next approximation of the solution to the linear system of equationsAu=f. There are two different situations: lucky breakdown, when we have found the solution and hard breakdown, when the next Krylov subspace cannot be generated and/or the next approximate solution (iterate) cannot be computed. We show that some breakdowns depend on the chosen method of generating the basis vectors. Another undesirable feature of the iterative methods is stagnation. This occurs when the error does not change for several iterative steps. We investigate when iterative methods can stagnate and describe conditions which characterize stagnation. We show that in some cases stagnation can imply breakdown.  相似文献   

16.
This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood.The aim is to show that preconditioned eigensolvers (like the preconditioned steepest descent iteration (PSD) and the locally optimal preconditioned conjugate gradient method (LOPCG)) can be interpreted as truncated approximate Krylov subspace iterations. In the limit of preconditioning with the exact inverse of the system matrix (such preconditioning can be approximated by multiple steps of a preconditioned linear solver) the iterations behave like Invert-Lanczos processes for which convergence estimates are derived.  相似文献   

17.
In the present paper, we present numerical methods for the computation of approximate solutions to large continuous-time and discrete-time algebraic Riccati equations. The proposed methods are projection methods onto block Krylov subspaces. We use the block Arnoldi process to construct an orthonormal basis of the corresponding block Krylov subspace and then extract low rank approximate solutions. We consider the sequential version of the block Arnoldi algorithm by incorporating a deflation technique which allows us to delete linearly and almost linearly dependent vectors in the block Krylov subspace sequences. We give some theoretical results and present numerical experiments for large problems.  相似文献   

18.
We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments. AMS subject classification (2000)  65F10, 65L60, 65M60, 65N22  相似文献   

19.
For large systems of linear equations, iterative methods provide attractive solution techniques. We describe the applicability and convergence of iterative methods of Krylov subspace type for an important class of symmetric and indefinite matrix problems, namely augmented (or KKT) systems. Specifically, we consider preconditioned minimum residual methods and discuss indefinite versus positive definite preconditioning. For a natural choice of starting vector we prove that when the definite and indenfinite preconditioners are related in the obvious way, MINRES (which is applicable in the case of positive definite preconditioning) and full GMRES (which is applicable in the case of indefinite preconditioning) give residual vectors with identical Euclidean norm at each iteration. Moreover, we show that the convergence of both methods is related to a system of normal equations for which the LSQR algorithm can be employed. As a side result, we give a rare example of a non-trivial normal(1) matrix where the corresponding inner product is explicitly known: a conjugate gradient method therefore exists and can be employed in this case. This work was supported by British Council/German Academic Exchange Service Research Collaboration Project 465 and NATO Collaborative Research Grant CRG 960782  相似文献   

20.
Iterative regularization with minimum-residual methods   总被引:2,自引:0,他引:2  
We study the regularization properties of iterative minimum-residual methods applied to discrete ill-posed problems. In these methods, the projection onto the underlying Krylov subspace acts as a regularizer, and the emphasis of this work is on the role played by the basis vectors of these Krylov subspaces. We provide a combination of theory and numerical examples, and our analysis confirms the experience that MINRES and MR-II can work as general regularization methods. We also demonstrate theoretically and experimentally that the same is not true, in general, for GMRES and RRGMRES – their success as regularization methods is highly problem dependent. AMS subject classification (2000)  65F22, 65F10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号