首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a hybrid lattice Boltzmann flux solver (LBFS) is proposed for simulation of viscous compressible flows. In the solver, the finite volume method is applied to solve the Navier-Stokes equations. Different from conventional Navier-Stokes solvers, in this work, the inviscid flux across the cell interface is evaluated by local reconstruction of solution using one-dimensional lattice Boltzmann model, while the viscous flux is still approximated by conventional smooth function approximation. The present work overcomes the two major drawbacks of existing LBFS [28–31], which is used for simulation of inviscid flows. The first one is its ability to simulate viscous flows by including evaluation of viscous flux. The second one is its ability to effectively capture both strong shock waves and thin boundary layers through introduction of a switch function for evaluation of inviscid flux, which takes a value close to zero in the boundary layer and one around the strong shock wave. Numerical experiments demonstrate that the present solver can accurately and effectively simulate hypersonic viscous flows.  相似文献   

2.
A simple and efficient time-dependent method is presented for solving the steady compressible Euler and Navier–Stokes equations with third-order accuracy. Owing to its residual-based structure, the numerical scheme is compact without requiring any linear algebra, and it uses a simple numerical dissipation built on the residual. The method contains no tuning parameter. Accuracy and efficiency are demonstrated for 2-D inviscid and viscous model problems. Navier–Stokes calculations are presented for a shock/boundary layer interaction, a separated laminar flow, and a transonic turbulent flow over an airfoil.  相似文献   

3.
The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an equilibrium one through particle collisions. The different mechanism in the flux evaluation deviates their numerical performance. Through this study, we may conclude scientifically that it may NOT be valid to use the Euler equations as governing equations to construct numerical fluxes in a discretized space with limited cell resolution. To adapt the Navier–Stokes (NS) equations is NOT valid either because the NS equations describe the flow behavior on the hydrodynamic scale and have no any corresponding physics starting from a discontinuity. This fact alludes to the consistency of the Euler and Navier–Stokes equations with the continuum assumption and the necessity of a direct modeling of the physical process in the discretized space in the construction of numerical scheme when modeling very high Mach number flows. The development of numerical algorithm is similar to the modeling process in deriving the governing equations, but the control volume here cannot be shrunk to zero.  相似文献   

4.
We compare in this paper the properties of Osher flux with O-variant and P-variant (Osher-O flux and Osher-P flux) in finite volume methods for the two-dimensional Euler equations and propose an entropy fix technique to improve their robustness. We consider both first-order and second-order reconstructions. For inviscid hypersonic flow past a circular cylinder, we observe different problems for different schemes: a first-order Osher-O scheme on quadrangular grids yields a carbuncle shock, while a first-order Osher-P scheme results in a dislocation shock for high Mach number cases. In addition, a second-order Osher scheme can also yield a carbuncle shock or be unstable. To improve the robustness of these schemes we propose an entropy fix technique, and then present numerical results to show the effectiveness of the proposed method. In addition, the influence of grid aspects ratio, relative shock position to the grid and Mach number on shock stability are tested. Viscous heating problem and double Mach reflection problem are simulated to test the influence of the entropy fix on contact resolution and boundary layer resolution.  相似文献   

5.
谢文佳  李桦  潘沙  田正雨 《物理学报》2015,64(2):24702-024702
高超声速流动是高复杂性的可压缩黏性流动, 其中存在激波、剪切层、激波/激波干扰、激波/边界层干扰、旋涡与分离流动等复杂流场结构. 对其进行准确模拟需要使用低耗散、强鲁棒性的激波捕捉方法. 本文基于一类新型的通量项分裂方法, 提出了一种耗散低且鲁棒性好的激波捕捉格式K-CUSP-X. 对该格式的耗散性和激波稳定性进行了详细的理论分析, 得到了格式激波稳定的数值条件. 推论认为, 迎风格式激波稳定的充分条件为速度扰动量具有衰减性, 数值实验验证了该推论. 研究表明, 该格式与Toro提出的通量分裂格式K-CUSP-T相比, 在保证精确捕捉接触间断的同时, 又具有更好的稳定性, 在激波处不会产生“红玉”现象.  相似文献   

6.
The foundation for the development of modern compressible flow solver is based on the Riemann solution of the inviscid Euler equations. The high-order schemes are basically related to high-order spatial interpolation or reconstruction. In order to overcome the low-order wave interaction mechanism due to the Riemann solution, the temporal accuracy of the scheme can be improved through the Runge–Kutta method, where the dynamic deficiencies in the first-order Riemann solution is alleviated through the sub-step spatial reconstruction in the Runge–Kutta process. The close coupling between the spatial and temporal evolution in the original nonlinear governing equations seems weakened due to its spatial and temporal decoupling. Many recently developed high-order methods require a Navier–Stokes flux function under piece-wise discontinuous high-order initial reconstruction. However, the piece-wise discontinuous initial data and the hyperbolic-parabolic nature of the Navier–Stokes equations seem inconsistent mathematically, such as the divergence of the viscous and heat conducting terms due to initial discontinuity. In this paper, based on the Boltzmann equation, we are going to present a time-dependent flux function from a high-order discontinuous reconstruction. The theoretical basis for such an approach is due to the fact that the Boltzmann equation has no specific requirement on the smoothness of the initial data and the kinetic equation has the mechanism to construct a dissipative wave structure starting from an initially discontinuous flow condition on a time scale being larger than the particle collision time. The current high-order flux evaluation method is an extension of the second-order gas-kinetic BGK scheme for the Navier–Stokes equations (BGK-NS). The novelty for the easy extension from a second-order to a higher order is due to the simple particle transport and collision mechanism on the microscopic level. This paper will present a hierarchy to construct such a high-order method. The necessity to couple spatial and temporal evolution nonlinearly in the flux evaluation can be clearly observed through the numerical performance of the scheme for the viscous flow computations.  相似文献   

7.
A high-order accurate hybrid central-WENO scheme is proposed. The fifth order WENO scheme [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] is divided into two parts, a central flux part and a numerical dissipation part, and is coupled with a central flux scheme. Two sub-schemes, the WENO scheme and the central flux scheme, are hybridized by means of a weighting function that indicates the local smoothness of the flowfields. The derived hybrid central-WENO scheme is written as a combination of the central flux scheme and the numerical dissipation of the fifth order WENO scheme, which is controlled adaptively by a weighting function. The structure of the proposed hybrid central-WENO scheme is similar to that of the YSD-type filter scheme [H.C. Yee, N.D. Sandham, M.J. Djomehri, Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150 (1999) 199–238]. Therefore, the proposed hybrid scheme has also certain merits that the YSD-type filter scheme has. The accuracy and efficiency of the developed hybrid central-WENO scheme are investigated through numerical experiments on inviscid and viscous problems. Numerical results show that the proposed hybrid central-WENO scheme can resolve flow features extremely well.  相似文献   

8.
甄亚欣  倪国喜 《计算物理》2015,32(6):677-684
在移动网格上构造一种反应流的动理学格式.首先利用BGK模型推导含化学反应的流体力学方程组,并利用其积分形式构造移动网格上离散格式,再利用自适应移动网格方法得到网格速度,最后利用时间精确的动理学数值方法构造数值通量,得到移动网格单元上新的物理量.一维与二维的数值实验表明这种格式同时具有高精度、高分辨率的特点.  相似文献   

9.
Many researchers have reported failures of the approximate Riemann solvers in the presence of strong shock. This is believed to be due to perturbation transfer in the transverse direction of shock waves. We propose a simple and clear method to prevent such problems for the Harten–Lax–van Leer contact (HLLC) scheme. By defining a sensing function in the transverse direction of strong shock, the HLLC flux is switched to the Harten–Lax–van Leer (HLL) flux in that direction locally, and the magnitude of the additional dissipation is automatically determined using the HLL scheme. We combine the HLLC and HLL schemes in a single framework using a switching function. High-order accuracy is achieved using a weighted average flux (WAF) scheme, and a method for v-shear treatment is presented. The modified HLLC scheme is named HLLC–HLL. It is tested against a steady normal shock instability problem and Quirk’s test problems, and spurious solutions in the strong shock regions are successfully controlled.  相似文献   

10.
A lack of reliable data treatment method has been for several decades the bottleneck of viscosity measurement by disturbance amplitude damping method of shock waves.In this work the finite difference method is firstly applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in inviscid and viscous flow.When water shocked to 15 GPa is taken as an example,the main results are as follows:(1) For inviscid and lower viscous flows the numerical method gives results in good agreement with the analytic solutions under the condition of small disturbance(a0/λ=0.02);(2) For the flow of viscosity beyond 200 Pa s(η=κ) the analytic solution is found to overestimate obviously the effects of viscosity.It is attributed to the unreal pre-conditions of analytic solution by Miller and Ahrens;(3) The present numerical method provides an effective tool with more confidence to overcome the bottleneck of data treatment when the effects of higher viscosity in experiments of Sakharov and flyer impact are expected to be analyzed,because it can in principle simulate the development of shock waves in flows with larger disturbance amplitude,higher viscosity,and complicated initial flow.  相似文献   

11.
数值求解二维Euler方程的有限体积法(如k-exact,WENO重构、紧致重构等),无一例外地要进行耗时的网格单元上的二维重构.然而这些二维重构最后仅用于确定网格单元边界上高斯积分点处的解值,单元上二维重构似乎并非必需的.因此,文章提出用网格边上的一维重构来取代有限体积法中网格单元上的二维重构,分别在一致矩形网格和非结构三角形网格上发展了基于网格边重构的求解二维Euler方程的新方法,称为降维重构算法.数值算例表明该算法可以计算有强激波的无黏流动问题,且有较高的计算效率.   相似文献   

12.
In the design of a hypersonic airliner that can considerably shorten the flight time, how to accurately predict the vehicle's aerodynamic heating loads is of great significance. In this study, a new shock-stable flux scheme called the simple low dissipation advection upwind splitting method(SLAU)-M1 is proposed for the prediction of hypersonic aerodynamic heating load. Based on the construction of the SLAU scheme for low-speed simulations, SLAU-M1 improves the robustness of the mass flux against shock instability. After validating the code employed, several numerical test cases are conducted. The onedimensional(1D) sod shock tube case and the two-dimensional(2D) inviscid NACA0012 airfoil case show that SLAU-M1 features a high level of accuracy at both low and high speeds. To simulate the hypersonic viscous flow over a blunt cone, we adopt different aspect ratios(ARs) of cells near the shock. The results suggest that SLAU-M1 is much less sensitive to the AR of cells near the shock in predicting hypersonic aerodynamic heating loads. Moreover, the findings show that the theoretical value is considerably better than that of the other schemes. The hypersonic viscous flow over a 2D double ellipsoid case and that over the Hypersonic Flight Experiment vehicle case also indicate that SLAU-M1 exhibits a considerably high level of accuracy in hypersonic heating predictions. These properties suggest that SLAU-M1 promises to be widely used in the accurate prediction of the aerodynamic heating loads of hypersonic airliners.  相似文献   

13.
In the past few years a great variety of different Krylov subspace methods have been developed and investigated for several model equations. This paper is devoted to the comparison of current preconditioned Krylov subspace methods concerning several inviscid and viscous flow problems of interest in engineering applications. Therefore, the design of an implicit finite volume approximation of the Navier–Stokes equations on unstructured grids is described whereby a new combination of an isotropic triangulation with unisotropic subgrids is presented to achieve high resolution for high Reynolds number flows. For the first time, based on a specific selection of different inviscid and viscous flow fields, a reliable answer can be given to the fundamental question concerning the choice of iterative method depending on the underlying flow field in the area of the Euler and Navier–Stokes equations to get a stable and fast numerical scheme.  相似文献   

14.
将空间—时间守恒(STC)格式应用于求解N-S方程,并对激波—边界层相互作用问题进行了计算。结果表明,该方法可捕获激波与边界层相互作用的各种现象,显示了优良的数值模拟性能。  相似文献   

15.
In this paper, the behavior of shock-capturing methods in Lagrangian coordinate is investigated. The relation between viscous shock and inviscid one is analyzed quantitatively, and the procedure of a viscous shock formation and propagation with a jump type initial data is described. In general, a viscous shock profile and a discontinuous one include different energy and momentum, and these discrepancies result in the generation of waves in all families when a single wave Riemann problem (shock or rarefaction) is solved. Employing this method, some anomalous behavior, such as, viscous shock interaction, shock passing through ununiform grids, postshock oscillations and lower density phenomenon is explained well. Using some classical schemes to solve the inviscid flow in Lagrangian coordinate may be not adequate enough to correctly describe flow motion in the discretized space. Partial discrepancies between von Neumann artificial viscosity method and Godunov method are exhibited. Some reviews are given to those methods which can ameliorate even eliminate entropy errors. A hybrid scheme based on the understanding to the behavior of viscous solution is proposed to suppress the overheating error.  相似文献   

16.
A new numerical method-basic function method is proposed. This method can directly discrete differential operators on unstructured grids. By using the expansion of basic function to approach the exact function, the central and upwind schemes of derivative are constructed. By using the polynomial as basic function, applying the technique of flux splitting method and the combination of central and upwind schemes, the non-physical fluctuation near the shock wave is suppressed. The first-order basic function scheme of polynomial type for solving inviscid compressible flow numerically is constructed in this paper. Several numerical results of many typical examples for one-, two- and three-dimensional inviscid compressible steady flow illustrate that it is a new scheme with high accuracy and high resolution for shock wave. Especially, combining with the adaptive remeshing technique, the satisfactory results can be obtained by these schemes.  相似文献   

17.
陈靓  阎超 《计算物理》1998,15(5):547-552
研究了新型上风格式AUSM+的分辨率、效率等性能,并用它与Roe、vanLeer上风格式数值模拟了前向台阶激波反射流动,通过对激波、膨胀波、接触间断及其间相互干扰的复杂波系的模拟对比,分析探讨了AUSM+格式的低数值耗散、间断高分辨率等特性。  相似文献   

18.
The finite volume particle method (FVPM) is a mesh-free method for fluid dynamics which allows simple and accurate implementation of boundary conditions and retains the conservation and consistency properties of classical finite volume methods. In this article, the FVPM is extended to viscous flows using a consistency-corrected smoothed particle hydrodynamics (SPH) approximation to evaluate velocity gradients. The accuracy of the viscous FVPM is improved by a higher-order discretisation of the inviscid flux combined with a second-order temporal discretisation. The higher-order inviscid FVPM is validated for a 1-D shock tube problem, in which it demonstrates an enhanced shock capturing ability. For two-dimensional simulations, a small arbitrary Lagrange–Euler correction to fully Lagrangian particle motion is beneficial in maintaining a favourable particle distribution over long simulation times. The viscous FVPM is validated for two-dimensional Poiseuille, Taylor–Green and lid-driven cavity flows, and good agreement is achieved with analytic or reference numerical solutions. These results establish the viability of FVPM as a tool for mesh-free simulation of viscous flows in engineering.  相似文献   

19.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

20.
In this work we extend the high-order discontinuous Galerkin (DG) finite element method to inviscid low Mach number flows. The method here presented is designed to improve the accuracy and efficiency of the solution at low Mach numbers using both explicit and implicit schemes for the temporal discretization of the compressible Euler equations. The algorithm is based on a classical preconditioning technique that in general entails modifying both the instationary term of the governing equations and the dissipative term of the numerical flux function (full preconditioning approach). In the paper we show that full preconditioning is beneficial for explicit time integration while the implicit scheme turns out to be efficient and accurate using just the modified numerical flux function. Thus the implicit scheme could also be used for time accurate computations. The performance of the method is demonstrated by solving an inviscid flow past a NACA0012 airfoil at different low Mach numbers using various degrees of polynomial approximations. Computations with and without preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号