首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Technical Physics - The tensile strength of single-crystal sapphire specimens with c, a, d, r, n, s, g, and m crystallographic orientations (c-, a-, d-, r-, n-, s-, g-, and m-axis specimens) has...  相似文献   

2.
H.-S. Zhang 《哲学杂志》2013,93(16):2235-2248
Phase transformations in a single-crystal Cu–Al–Ni shape-memory alloy induced by thermomechanical effects were investigated in situ by high-resolution synchrotron X-ray microdiffraction. Contrary to the common belief, austenite texture maps revealed that austenite-to-martensite transformation occurred during heating of the partially transformed material under fixed specimen elongation. Twinned and detwinned types of martensite coexisted during this austenite-to-martensite phase transformation. Twinning and detwinning structures evolved to accommodate changes in stress and strain generated in the temperature-varying environment. Small amounts of austenite exhibiting distorted crystallographic orientation were detected in regions of stress-induced martensite during heating of the partially transformed material. The results of this investigation provide insight into intriguing stress rate-dependent phenomena intrinsic of shape-memory alloys and elucidate complex phase transformations due to thermal and mechanical stress effects.  相似文献   

3.
苏锦芳  宋海洋  安敏荣 《物理学报》2013,62(6):63103-063103
采用分子动力学模拟方法, 研究了金纳米管沿不同晶向拉伸与压缩载荷下的力学性能, 并分析了金纳米管的半径对其力学行为的影响. 在模拟计算中, 采用镶嵌原子势描述金原子之间的相互作用. 模拟结果表明, 在拉伸及压缩过程中, 不同晶向的金纳米管力学性能相差较大, 在拉伸和压缩载荷下金纳米管<110>向的屈服强度最大; 在三个晶向<100>, <110>, <111>的金纳米管中, <100>晶向的金纳米管其屈服强度和杨氏模量都远远小于其他晶向. 研究结果还发现, 当纳米管的半径小于3.0 nm时, 金纳米管的屈服强度没有大的变化, 而当半径大于3.0 nm后, 随着半径的增大, 其屈服强度明显降低. 关键词: 分子动力学模拟 金纳米管 力学性能  相似文献   

4.

The intermediate-temperature creep response of single-crystal Ni 3 Al(Ta) has been investigated along both [ ] and [001] axial orientations. The effect of the existing deformation structure (i.e. pre-straining) on the [ ] creep response was reported. The creep responses of virgin specimens and specimens prestrained at room temperature (RT) and 520°C are compared. In order to compare the dislocation structures prior to creep, the microstructure of specimens which had been deformed at a constant strain rate at RT and 520°C, but not subjected to creep, was also examined. Creep curves show that the temperature of pre-strain influences the subsequent creep properties. The primary creep response, like the yielding response, appears to be controlled by the kink size distribution, while the secondary creep response is thought to be controlled by the kink separation (or the length of the Kear-Wilsdorf locks). Specimens crept along [ ] display steady state creep properties and rectangularly oriented [ ](010) dislocations, while a virgin specimen crept along [001] displays an increasing secondary creep rate (inverse creep) and d110 ¢{100}-type dislocations. Inverse creep along [001] is thought to be the result of an increasing density of edge kink octahedral sources where there is little resolved shear stress on the cube planes.  相似文献   

5.
通过分子动力学模拟研究了在相同冲击加载强度下单晶铝中氦泡和孔洞的塑性变形特征,结果发现氦泡和孔洞的塌缩是由发射剪切型位错环引起的,而没有观测到棱锥型位错环发射. 氦泡和孔洞周围的位错优先成核位置基本一致,但是氦泡周围发射的位错环数目比孔洞多,位错环发射速度明显比孔洞快. 且氦泡和孔洞被冲击波先扫过部分比后扫过部分发射位错困难. 通过滑移面上的分解应力分析发现,氦泡和孔洞周围塑性特征的差别是由于氦泡内压引起最大分解应力分布改变造成的. 氦泡和孔洞被冲击波先后扫过部分塑性不对称是因为冲击波扫过时引起形状变化, 关键词: 分子动力学 冲击波 氦泡 孔洞  相似文献   

6.
运用第一性原理方法研究了L12型铝合金相Al3Sc和Al3Zr的晶体结构、电子结构和弹性.结合能和形成能的计算表明,两种合金具有较强的合金化能力,且Al3Zr较Al3Sc具有更强的结构稳定性.电子结构分析表明,费米能级以下较多的价电子数决定了Al3Zr具有较强的结构稳定性.计算并分析比较了两种合金相的单晶弹性常数(C11,C12和C44)以及多晶弹性模量(体弹性模量B、剪切模量G、杨氏模量Y、泊松比ν和各向异性因子A).通过对比实验和其他理论计算结果,进一步分析和解释了两种合金相的力学性质.  相似文献   

7.
8.
本文利用分子动力学模拟的方法研究了不同取向、尺寸和温度因素对单晶体心立方铁纳米线的拉伸变形行为的影响.铁纳米线轴向初始取向分别为<001>、<110>、<111>、<102>、<112>,模拟了不同温度(10~700 K)和不同尺寸范围(1.5~5 nm)下的变形机制.研究结果表明取向、尺寸和温度会显著影响单晶体心立方铁纳米线的拉伸变形行为.分子动力学模拟结果表明,直径为2 nm的<001>铁纳米线在300 K的拉伸载荷下,主要通过孪晶的模式发生变形,最后拉伸取向转变为<110>.而在700 K下,<001>铁纳米线的拉伸变形模式由滑移主导.不同初始取向在不同温度和尺寸下其变形机制截然不同,这导致了铁纳米线不同的力学性能.本文系统性地研究了在不同取向下的铁纳米线变形机制随尺寸和温度变化发生的转变.  相似文献   

9.
We experimentally study second-harmonic generation by femtosecond Cr: forsterite-laser radiation scattered on the surface of porous gallium phosphide with characteristic pore sizes and distances between the pores comparable with the second-harmonic wavelength. The intensity of the second-harmonic signal from samples with initial crystallographic surface orientations (110) and (111) is more than an order of magnitude higher than the intensity of the second harmonic generated in reflection from single-crystal gallium phosphide. The efficiency of second-harmonic generation by macroporous gallium phosphide substantially increases as the pump wave-length becomes shorter. The influence of light localization and scattering effects on the enhancement of second-harmonic generation and polarization properties of the second-harmonic is discussed.  相似文献   

10.
ABSTRACT

We present a method to perform improved measurements of the effects of chemical variability on physical properties of single-crystal samples in the diamond-anvil cell by employing a multi-sample approach. By customizing the sizes and shapes of the samples using a focused ion beam machine the simultaneous loading of relatively large crystals into a single sample chamber becomes feasible. To illustrate the potential of this approach, elastic properties of four single crystals of ringwoodite with different chemical compositions have been measured at high pressure. Our results suggest that the multi-sample approach allows for the quantification of small effects of chemical variations, such as iron and hydrogen incorporation, on physical properties. Furthermore, we discuss the possibility of using the multi-sample approach to load several crystals with different crystallographic orientations of the same material into one sample chamber in order to map out the direction dependence of anisotropic physical properties.  相似文献   

11.
姜太龙  喻寅  宦强  李永强  贺红亮 《物理学报》2015,64(18):188301-188301
通过微结构设计提升脆性功能材料的冲击塑性, 将有助于避免或延缓失效的发生. 提出在脆性材料中植入特定的微小孔洞以改善其冲击塑性的设计方法. 采用一种能够定量表现脆性材料力学性质的格点-弹簧模型, 研究了孔洞排布方式对脆性材料冲击响应的影响. 孔洞随机排布的多孔脆性材料具有明显高于致密脆性材料的冲击塑性, 而设计规则的孔洞排布方式将有助于进一步提升脆性材料的冲击塑性. 对150 m/s活塞冲击下气孔率5%的多孔样品的介观变形特征分析表明, 孔洞规则排布的样品中孔洞贯通和体积收缩变形占主导, 而孔洞随机排布的样品中剪切裂纹长距离扩展和滑移与转动变形占主导. 尽管在宏观的Hugoniot应力-应变曲线上, 两种孔洞排布方式的样品都表现出三段式响应特征(线弹性阶段、塌缩变形阶段和滑移与转动变形阶段), 但孔洞规则排布时孔洞塌缩变形阶段对整体冲击塑性的贡献更大. 研究揭示的规则排布孔洞增强脆性材料冲击塑性的原理, 将有助于脆性材料冲击诱导功能失效的预防.  相似文献   

12.
Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated.The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types.The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy.The equation of the critical stress is derived,which can judge whether the loops show hysteresis or not.Numerical calculations suggest that except for the magnitude of the mechanical stress,the relative orientation of the stress is also an important factor to tune the exchange bias effect.  相似文献   

13.
This paper reports the formation and properties of nano-composite pyroelectric thin films. They consist of pyroelectric triglycine sulfate (TGS) single-crystal nano-rods grown inside a highly dense array of alumina pores (about 65 nm diameter and density of 1011 cm−2). The nucleation and growth of the TGS single crystals are obtained by precipitation from a supersaturated aqueous solution. Nucleation is preferred only at the bottom of the pores due to a tight control of temperature, composition and pore diameter. Growth of single crystals with preferred crystallographic orientation is obtained with the aid of an applied electric field. Various crystallographic orientations (1 0 0) (−1 1 0) (−1 2 0) are obtained separately as a single preferred orientation by changing the amplitude of the electric field during crystal growth. The films exhibit ferroelectric behavior.  相似文献   

14.
15.
Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.  相似文献   

16.
The present work has investigated the tensile mechanical behavior of the skutterudite CoSb3 single-crystal in the presence of antimony vacancies, since the antimony atoms in CoSb3 are active and are usually easy to lose in practice. The molecular dynamics simulation method is employed. The vacancy atoms, whose fraction is limited up to 5%, are chosen randomly. The virtual uniaxial tension is carried out by strain controlling along a principal crystallographic direction at 300 K. The specimens with vacancies show similar stress–strain response features to there of the perfect crystal. However, the effective Young's modulus decreases linearly with the increase of the vacancy content, and the ultimate strength drops substantially from no vacancy to even a small vacancy fraction. Temperature dependence of the simulation results is also considered. Both Young's modulus and the ultimate strength exhibit an approximately linear reduction with increasing temperature for a specific vacancy fraction, and moreover, the reduction rate is comparable for different vacancy fractions. The Vacancy distribution effect is briefly discussed as well. As the vacancy concentration becomes uniform, the ultimate strength of the material would be promoted significantly.  相似文献   

17.
Kozhushko VV  Hess P 《Ultrasonics》2008,48(6-7):488-491
The anisotropy of the elastic properties of single-crystal silicon manifests itself in features of both the linear and nonlinear surface acoustic wave (SAW) propagation. Directions showing the phonon-focusing effect and strong nonlinearity were employed in contact-free and notch-free laser-based fracture experiments, yielding the intrinsic strength of silicon. The critical tensile stress values vary between 2.5 GPa and 7 GPa for the different crystallographic planes and directions of SAW propagation investigated.  相似文献   

18.
采用分子动力学模拟计算方法,考察具有较高层错能的Al纳米线沿不同晶向的力学行为和变形机制。在相同计算条件下与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线进行比较。结果表明:在力学行为方面,Al纳米线的弹性模量呈现明显的结构各向异性,满足E[111] > E[110] > E[100]的关系,这一关系在FCC金属纳米线中普遍成立;Al纳米线的屈服应力随晶向呈现σy[100] > σy[111] > σy[110]的关系,这一关系在具有较低层错能的FCC金属纳米线中不具有普遍性,这与体系中位错形成机制密切相关。根据拉伸变形过程微观结构的演变规律,阐明Al纳米线不同晶向的变形机制,并与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线的变形机制进行比较。结果表明,对于尺度较小的高层错能Al纳米线,Schmid因子和广义层错能均难以准确预测其变形机制。  相似文献   

19.
Abstract

Failure of nanoscale Si thin films was examined using molecular dynamics (MD) simulations that employed the modified embedded atom method (MEAM) interatomic potential. Specifically, nanometre-thick slabs of different crystallographic orientations containing asymmetric, high aspect ratio surface flaws were subjected to uniaxial tensile strains with the strain applied perpendicular to the flaw major axis. The ensuing elastic response and failure behaviour were examined as a function of variation in crystallographic orientation relative to the surface flaw. For certain flaw orientations, crack propagation was accompanied by slip along preferred directions, while in other cases, failure was purely brittle. In addition, a significant dependence of the computed elastic constants and yield stress, on the relative orientation of the surface flaw was observed. This work offers new insights into the role of surface flaws on the mechanical failure of silicon-based, nanoscale, engineered structures.  相似文献   

20.
Wei Wen 《哲学杂志》2013,93(27):3557-3577
Al–Li 8090 alloy specimens were fatigued using a self-aligning four-point bend rig at R?=?0.1 and room temperature, in air, under constant maximum stress control. The crystallographic characteristics of fatigue crack initiation and early growth were studied using EBSD. It was found that the growth behaviour of a short crack were controlled by the twist (α) and tilt (β) components of crack plane deflection across each of the first 20 grain boundaries along the crack path, and that the α angle at the first grain boundary encountered by a micro-crack was critical in determining whether the crack could become propagating or non-propagating. In addition to the orientations of the two neighbouring grains, the tilt of their boundary could also affect α across the boundary. A minimum α-map for a vertical micro-crack was calculated to evaluate the resistance to crack growth into a neighbouring grain with a random orientation. Such an α-map is of value in alloy design against fatigue damage by optimising texture components in the alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号