首页 | 本学科首页   官方微博 | 高级检索  
     检索      

冲击加载下铝中氦泡和孔洞的塑性变形特征研究
引用本文:王海燕,祝文军,邓小良,宋振飞,陈向荣.冲击加载下铝中氦泡和孔洞的塑性变形特征研究[J].物理学报,2009,58(2):1154-1160.
作者姓名:王海燕  祝文军  邓小良  宋振飞  陈向荣
作者单位:(1)四川大学物理科学与技术学院,成都 610064; (2)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900; (3)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900;河南理工大学材料科学与工程学院,焦作 454000;四川大学物理科学与技术学院,成都 610064; (4)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900;四川大学物理科学与技术学院,成都 610064
基金项目:冲击波物理与爆轰物理重点实验室基金(批准号:9140C67010106ZS75)、中国工程物理研究院科学技术发展基金重点项目(批准号:2007A01004)和国家自然科学基金(批准号:60436010)资助的课题.
摘    要:通过分子动力学模拟研究了在相同冲击加载强度下单晶铝中氦泡和孔洞的塑性变形特征,结果发现氦泡和孔洞的塌缩是由发射剪切型位错环引起的,而没有观测到棱锥型位错环发射. 氦泡和孔洞周围的位错优先成核位置基本一致,但是氦泡周围发射的位错环数目比孔洞多,位错环发射速度明显比孔洞快. 且氦泡和孔洞被冲击波先扫过部分比后扫过部分发射位错困难. 通过滑移面上的分解应力分析发现,氦泡和孔洞周围塑性特征的差别是由于氦泡内压引起最大分解应力分布改变造成的. 氦泡和孔洞被冲击波先后扫过部分塑性不对称是因为冲击波扫过时引起形状变化, 关键词: 分子动力学 冲击波 氦泡 孔洞

关 键 词:分子动力学  冲击波  氦泡  孔洞
收稿时间:5/5/2008 12:00:00 AM

Plastic deformation of helium bubble and void in aluminum under shock loading
Wang Hai-Yan,Zhu Wen-Jun,Deng Xiao-Liang,Song Zhen-Fei,Chen Xiang-Rong.Plastic deformation of helium bubble and void in aluminum under shock loading[J].Acta Physica Sinica,2009,58(2):1154-1160.
Authors:Wang Hai-Yan  Zhu Wen-Jun  Deng Xiao-Liang  Song Zhen-Fei  Chen Xiang-Rong
Abstract:The characteristic of microscopic plasticity associated with collapse of helium bubble and void in single-crystal aluminum under the same shock loading strength has been investigated by molecular dynamics (MD) simulations. The results show that both the helium bubble and the void collapse through the emission of shear dislocation loops, while prismatic dislocation loops are never observed in the simulations. The preferential dislocation nucleation sites are similar for the helium bubbles and the voids, but the number of dislocations emitted from the helium bubble outnumbers that from the voids, and the dislocation loops emitted from the helium bubbles move faster than that from the voids. Meanwhile, it is more difficult to emit dislocation loops from the leading side (the side which the shock hits first) of both the helium bubbles and the voids than from the trailing side. By analysing the resolved shear stress along the slip plane, we found that the internal pressure of the helium bubbles increase the resolved shear stress and make the dislocation emission from the helium bubbles much easier than from the voids. The curvature change from the leading side to the trailing side produced by the shock modifies the critical shear stress for dislocation nucleation, which explains the difference in the plasticity between the leading side and the tailing side of both the helium bubbles and the voids. The result will contribute to a better understanding of the microscopic mechanism through which irradiation damages affect the dynamic properties of metals.
Keywords:molecular dynamics  shock wave  helium bubble  void
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号