首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and eco-friendly electrochemical method to reduce graphene oxide precursor was employed for fabrication of graphene sheets modified glassy carbon electrode, and then, the resulting electrode [electrochemically reduced graphene oxide (ERGO)/glassy carbon electrode (GCE)] was used to determine p-aminophenol. The experimental results demonstrated that the modified electrode exhibited excellent electrocatalytic activity toward the redox of p-aminophenol as evidenced by the significant enhancement of redox peak currents and the decreased peak-to-peak separation in comparison with a bare GCE. A highly sensitive and selective voltammetry determination of p-aminophenol is developed using the ERGO/GCE. This method has been applied for the direct determination of p-aminophenol in artificial wastewater.  相似文献   

2.
《Analytical letters》2012,45(16):2581-2596
A novel assay is reported for the simultaneous determination of paracetamol and p-aminophenol using a poly(2,2′-(1,4-phenylenedivinylene)bis-8-hydroxyquinaldine) modified glassy carbon electrode. Poly(2,2′-(1,4-phenylenedivinylene)bis-8-hydroxyquinoline) modified electrodes were prepared by electrochemical polymerization. The electrode surface was characterized by scanning electron microscopy. The electrochemical behavior of the modified electrode was investigated by cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The anodic peak potentials for paracetamol and p-aminophenol were at 580 and 337 millivolts, respectively, with a separation of 243 millivolts, adequate for their simultaneous determination. The results showed that the linear dynamic ranges for paracetamol and p-aminophenol were 0.5–200 micromolar and 3–150 micromolars, whereas the limits of detection were 0.075 and 0.45 micromolar, respectively. The novel poly(2,2′-(1,4-phenylenedivinylene)bis-8-hydroxyquinaldine) modified electrode provided excellent selectivity, sensitivity, and stability and was employed for the determination of paracetamol and p-aminophenol in pharmaceutical products and urine.  相似文献   

3.
Cu2O/nitrogen-doped grapheme(NG) nanocomposite material was prepared via a facile one step chemical reduction and characterized by means of X-ray diffraction(XRD) and scanning electron microscopy(SEM). A new electrochemical sensor was then fabricated by coating Cu2O/nitrogen-doped graphene nanocomposite with Nafion on glassy carbon electrode(Cu2O/NG/Nafion/GCE). The electrochemical response of this modified electrode toward ofloxacin was examined by cyclic voltammetry. The results indicate that Cu2O/NG/Nafion composite-modified electrode exhibits higher catalytic activity in the electrochemical oxidation of ofloxacin compared with glassy carbon electrode(GCE), Cu2O/Nafion modified electrode(Cu2O/Nafion/GCE), and N-doped graphene/Nafion modified electrode(NG/Nafion/GCE). Under optimal conditions, the peak current was found to be linearly proportional to the concentration of ofloxacin in the 0.5-27.5 μmol/L and 27.5-280 μmol/L ranges with a lower detection limit of 0.34 μmol/L, higher sensitivity of 39.32 μA·L·mmol-1 and a shorter reaction time of less than 2 s. In addition, Nafion can enhance the stability of the modified electrode and prevent some negative species. Thus the modified electrode exhibits good selectivity and a long working life. The Cu2O/NG/Nafion composite modified electrode shows promising application in electrochemical sensors, biosensors, and other related fields because of its excellent properties.  相似文献   

4.
The direct and selective detection of ascorbate at conventional carbon or metal electrodes is difficult due to its large overpotential and fouling by oxidation products. Electrode modification by electrochemical reduction of diazonium salts of different aryl derivatives is useful for catalytic, analytical and biotechnological applications. A monolayer of o-aminophenol (o-AP) was grafted on a glassy carbon electrode (GCE) via the electrochemical reduction of its in situ prepared diazonium salts in aqueous solution. The o-aminophenol confined surface was characterized by cyclic voltammetry. The grafted film demonstrated an excellent electrocatalytic activity towards the oxidation of ascorbate in phosphate buffer of pH 7.0 shifting the overpotential from +462 to +263 mV versus Ag/AgCl. Cyclic voltammetry and d.c. amperometric measurements were carried out for the quantitative determination of ascorbate and uric acid. The catalytic oxidation peak current was linearly dependent on the ascorbate concentration and a linear calibration curve was obtained using d.c. amperometry in the range of 2-20 μM of ascorbate with a correlation coefficient 0.9998, and limit of detection 0.3 μM. The effect of H2O2 on the electrocatalytic oxidation of ascorbate at o-aminophenol modified GC electrode has been studied, the half-life time and rate constant was estimated as 270 s, and 2.57 × 10−3 s−1, respectively. The catalytically selective electrode was applied to the simultaneous detection of ascorbate and uric acid, and used for their determination in real urine samples. This o-AP/GCE showed high stability with time, and was used as a simple and precise amperometric sensor for the selective determination of ascorbate.  相似文献   

5.
Increasing attention has been paid to layered double hydroxide (LDH) film modified electrode attributing to its desirable properties for fabrication of electrochemical sensor. In this paper, the Zn‐Al LDH film modified glassy carbon electrode was characterized by electrochemical methods. The enhanced electrocatalytic currents and well‐separated potentials for epinephrine (EP) and uric acid (UA) were observed at the as‐prepared electrode. Under selected condition, the differential pulse voltammetry response of the modified electrode to EP (or UA) shows a linear concentration range of 0.5 μM to 0.3 mM (or 2 μM to 0.4 mM) in the presence of 10.0 μM UA (or 20.0 μM EP). At a signal‐to‐noise ratio of 3, the calculated limits of detection are 0.13 μM and 0.66 μM, respectively. The proposed method has been performed to successfully detect EP and UA in analysis of real samples, such as in EP injection solution and human urine samples.  相似文献   

6.
Ye D  Luo L  Ding Y  Chen Q  Liu X 《The Analyst》2011,136(21):4563-4569
A novel nitrite sensor was fabricated based on a graphene/polypyrrole/chitosan nanocomposite film modified glassy carbon electrode. The nanocomposite film was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electron transfer behaviour of the modified electrodes was investigated in [Fe(CN)(6)](3-)/(4-) redox probe using cyclic voltammetry and electrochemical impedance spectroscopy. Differential pulse voltammetry and amperometry were used to study the electrochemical properties of the proposed sensor. Under optimum conditions, the sensor exhibited good reproducibility and stability for nitrite determination. Linear response was obtained in the range of 0.5-722 μM with a detection limit of 0.1 μM (S/N = 3) for nitrite determination.  相似文献   

7.
In this paper, a carbon ionic liquid electrode (CILE) was fabricated using ionic liquid 1-hexylpyridinium hexafluorophosphate as modifier, which was further in situ electrodeposited with graphene (GR) and gold nanoparticles step by step to get an Au/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the Au/GR/CILE surface with Nafion film to get the modified electrode denoted as Nafion/Mb/Au/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal potential (E 0′) located at ?0.197 V (vs. saturated calomel electrode), which was the typical characteristics of Mb heme Fe(III)/Fe(II) redox couples. Thus, the direct electron transfer rate between Mb and the modified electrode was promoted due to the high conductivity and increased surface area of Au/GR nanocomposite present on electrode surface. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb-modified electrode showed excellent electrocatalytic activities towards the reduction of trichloroacetic acid and H2O2 with wider linear range and lower detection limit. Using GR and Au nanoparticles modified CILE, a new third-generation electrochemical Mb biosensor was constructed with good stability and reproducibility.  相似文献   

8.
A novel electrochemical sensor based on iron tungstate doped tin oxide nanocomposite Nafion (FeWO4/SnO2/Nf) immobilized modified glassy carbon electrode (GCE) is fabricated to determine hydroquinone (HQ) in this present study. The structural morphology and phase of FeWO4/SnO2 nanocomposite are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), high transmission electron microscopy (HR-TEM) and Field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS) respectively. Electrochemical methods such as cyclic voltammetry (CV), difference pulse voltammetry (DPV) and amperometric (i-t curve) are used to describe the electrochemical performance of the surface modified electrode for HQ sensing studies. The FeWO4/SnO2/Nf immobilized GCE is exhibited excellent catalytic activity with the increasing current signal during HQ sensing. The linear range of response is obtained between 0.01 µM and 50 µM for HQ detection under optimized conditions and the low detection limit (LOD) is found to be 0.0013 µM. Moreover, the present modified electrode shows good reproducibility and excellent anti-interference behavior. In addition, the present electrochemical sensor is applied to the real samples of collected waters from various sources and the obtained experimental results are quite satisfactory.  相似文献   

9.
Gallic acid (GA), as a main phenolic acid, has been considered the main player on the human health, including the effects of reduction of cholesterol, depression of hypertension, anti-oxidation, anti-microbial, protection against cardiovascular disease and cancer. This study describes the development, electrochemical characterization and utilization of a novel functionalized graphene oxide/poly(p-aminohippuric acid)–sodium dodecyl sulfate nanocomposite modified glassy carbon electrode (APTS@GO/PPAH-SDS/GCE) for the electrocatalytic determination of GA. The synthesized nanocomposite was characterized by different techniques such as Fourier-transform infrared spectroscopy, thermo-gravimetric analysis and transmission electron microscopy. The electrochemical oxidation of GA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The modified electrode showed a potent and persistent electron mediating behavior followed by well-defined oxidation peak of GA and the linear range of 0.006–2000 µmol L?1 with a detection limit of 1.7 nmol L?1 for GA (S/N?=?3) using amperometric method. Also, it was successfully used for the GA determination in the black tea and tab water as real samples. Additionally, this electrode exhibited good stability and reproducibility. The results imply that the APTS@GO/PPAH-SDS nanocomposite might be a promising candidate for practical applications in GA electrochemical detection.  相似文献   

10.
The electrochemical behavior of colchicine at an acetylene black-dihexadecyl hydrogen phosphate (denoted as AB-DHP) composite film coated glassy carbon electrode (GCE) was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV). Compared with the poor electrochemical signal at the unmodified GCE, the electrochemical response of colchicine at the AB-DHP film modified GCE was greatly improved, as confirmed from the significant peak current enhancement. The remarkable peak current enhancement indicates that the AB-DHP modified GCE has great potential in the sensitive determination of colchicine. Thus, all the experimental conditions, which influence the electrochemical response of colchicine, were studied and the optimum conditions were achieved. Finally, a sensitive and simple voltammetric method with a good linear relationship in the range of 1.0 x 10(-7) approximately 4.0 x 10(-5) mol/L, was developed for the determination of colchicine. The detection limit of colchicine was also examined and a low value of 4.0 x 10(-8) mol/L for 4-min accumulation was obtained (S/N=3). This electrode was successfully applied to detect colchicine in human urine samples.  相似文献   

11.
A glassy carbon electrode was modified with dsDNA and a nanocomposite composed of multi-walled carbon nanotubes and chitosan (MWNT-chit). The electrode was applied to the electrochemical detection of DNA damage as induced by in situ generated bisphenol A (BPA) radicals through electro-oxidation. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The results indicate that MWNT-chit nanocomposite represents a viable platform for the immobilization of DNA that effectively promotes electron transfer between DNA and the electrode. The mode of interaction between DNA and BPA was investigated by differential pulse voltammetry and UV-vis spectrophotometry, indicating that the dominant interaction is intercalation. In order to explore the mechanism of damage caused by BPA radicals, the electro-oxidation of BPA at the modified glass electrode was investigated. Based on the signal for guanine without any other external indicator, DNA damage was investigated through the electro-oxidation of BPA.  相似文献   

12.
A graphite nanosheet (GNS)‐Nafion modified glassy carbon (GC) electrode was prepared and used for highly sensitive and selective determination of dopamine (DA). The GNS‐Nafion/GC electrode displayed excellent electrocatalytic activities towards DA and ascorbic acid (AA). The selective determination of DA was carried out successfully in the presence of AA by differential pulse voltammetry. High sensitivity (3.695 μA μM?1) and low detection limit (0.02 μM, S/N=3) for the DA detection were obtained. These good properties can be attributed to a large amount of edge plane defects presented on GNSs and the charge‐exclusion and concentration features of Nafion.  相似文献   

13.
研究了拉莫三嗪在玻碳电极上的电化学修饰及其修饰电极的电化学行为.在H2SO4介质中,采用循环伏安法制备了聚拉莫三嗪膜修饰玻碳电极(PLTG/GCE),用交流阻抗技术对修饰层进行表征.研究发现,该电极对NO-2具有明显的电催化氧化作用和灵敏的电流响应,NO-2的氧化峰电流与其浓度在9.6×10-6 ~ 1.1×10-3 ...  相似文献   

14.
《Analytical letters》2012,45(9):1552-1563
The development and application of an L-glutamic acid functionalized graphene nanocomposite, modified glassy carbon electrode are reported for the determination of epinephrine. The properties of the nanocomposite were characterized by scanning electron microscopy, ultraviolet-visible absorption spectroscopy, infrared spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The modified electrode had high sensitivity and strongly catalytic activity for the detection of epinephrine. A linear relationship between the epinephrine concentration and the current response was obtained in the range of 1 × 10?7 M to 1 × 10?3 M by differential pulse voltammetry with a limit of detection of 3 × 10?8 M. The modified electrode was employed to determine epinephrine in urine with satisfactory results.  相似文献   

15.
王存  张毅  孟丽  赵欣  王跃 《分析测试学报》2017,36(9):1124-1128
采用滴涂法得到多壁碳纳米管(MWCNTs)修饰的玻碳电极(GCE),通过电沉积方法将3-氨基-5-巯基-1,2,4-三唑(TA)沉积在MWCNTs/GCE表面,制备了聚(3-氨基-5-巯基-1,2,4-三唑)/多壁碳纳米管修饰电极(p TA/MWCNTs/GCE)。采用循环伏安法(CV)和示差脉冲伏安法(DPV),研究了尿酸(UA)、黄嘌呤(XA)和次黄嘌呤(HX)在该修饰电极上的电化学行为。结果表明,该修饰电极对UA、XA和HX均有较好的电催化活性作用,能实现对3种物质的同时测定。UA、XA和HX在该修饰电极上的线性范围分别为9.0~739.0、2.0~259.0、1.0~353.0μmol/L;检出限分别为0.67、0.17、0.33μmol/L。该修饰电极已成功用于尿液和血清实际样品中UA、XA和HX的同时测定,回收率为98.8%~105.5%。  相似文献   

16.
A novel method has been developed for the determination of methimazole, which was based on the enhanced electrochemical response of methimazole at the acetylene black/chitosan composite film modified glassy carbon electrode. The electrochemical behavior of methimazole was studied at this film electrode by cyclic voltammetry and differential pulse voltammetry. The experimental results showed that methimazole exhibited a remarkable oxidation peak at 0.63V at the film electrode. Compared with the bare glassy carbon electrode, the oxidation peak current increased greatly, and the peak potential shifted negatively, which indicated that the acetylene black/chitosan film electrode had good catalysis to the electrochemical oxidation of methimazole. The enhanced oxidation current of methimazole was indebted to the nano-porus structure of the composite film and the enlarged effective electrode area. The influences of some experimental conditions on the oxidation of methimazole were tested and the calibration plot was examined. The results indicated that the differential pulse response of methimazole was linear with its concentration in the range of 1.0×10(-7) to 2.0×10(-5)mol/L with a linear coefficient of 0.998, and in the range of 4.0×10(-5) to 3.0×10(-4)mol/L with a linear coefficient of 0.993. The detection limit was 2.0×10(-8)mol/L (S/N=3). The film electrode was used to detect the content of methimazole in rat serum samples by the standard addition method with satisfactory results.  相似文献   

17.
Platinum nanoparticles were successfully deposited within a multiwalled carbon nanotube (MWCNT)–Nafion matrix by a cyclic voltammetry method. A Pt(IV) complex was reduced to platinum nanoparticles on the surface of MWCNTs. The resulting Pt nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pt–MWCNT–Nafion nanocomposite film-modified glassy carbon electrode had a sharp hydrogen desorption peak at about −0.2 V vs. Ag/AgCl (3 M) in a solution of 0.5 M H2SO4, which is directly related to the electrochemical activity of the Pt nanoparticles presented on the surface of MWCNTs. The electrocatalytic properties of the Pt–MWCNT–Nafion nanocomposite-modified glassy carbon electrode for methanol electrooxidation were investigated by cyclic voltammetry in a 2 M CH3OH + 1 M H2SO4 solution. In comparison with the Pt-coated glassy carbon electrode and the Pt–Nafion modified glassy carbon electrode, the Pt–MWCNT–Nafion-modified electrode had excellent electrocatalytic activity toward methanol electrooxidation. The stability of the Pt–MWCNT–Nafion nanocomposite-modified electrode had also been evaluated.  相似文献   

18.
Semidifferential electroanalysis is described for hexacyanoferrate(III), dichromate, copper(II), p-aminophenol, p-benzoquinone, m-dinitrobenzene, guanine, guanosine, adenine, and adenosine at a stationary solid working electrode. Nearly symmetrical, peaked curves are obtained for the electrode processes of all the samples investigated. The predicted dependence of peak height and peak potential on concentration, electrode area, and potential scan rate are confirmed-experimentally for the glassy carbon disk electrode. It is demonstrated that the technique with the solid working electrode provides higher sensitivity and better resolution than ordinary linear sweep voltammetry. The sensitivity is somewhat worse than in differential pulse voltammetry, but the technique has the advantage of Speed.  相似文献   

19.
A sensitive, selective, and low cost electrochemical new methodology was developed for the quantification of ciprofloxacin (Cip) in beef samples by cyclic voltammetry and differential pulse voltammetry, using a CPE electrode modified with Nafion and Fullerenes (N−F/CPE). The optimum parameters for the composition of the N−F/CPE electrode are 0.19 g mineral oil, 0.01 g Nafion, 50 μL fullerene, and graphite powder 0.3 g. The electrochemical characterization was carried out by obtaining maximum anodic peak current associated with the oxidation of ciprofloxacin at 1.1 V, where the electrochemical process resulted to be irreversible and diffusion-controlled. The analytical characterization of the proposed methodology was carried out resulting in a LOD of 1.0 μmol L−1, a LOQ of 3.0 μmol L−1, a sensitivity of 0.37±0.006 μA/μmolL−1, and repeatability of 5.38 %.  相似文献   

20.
A glassy carbon electrode modified with carbon nanotube and bimetallic inorganic‐organic nanofiber hybrid nanocomposite was prepared and used for determination of trace levels of guaifenesin. A modified glassy carbon electrode was developed for the rapid, selective, sensitive and low cost monitoring of guaifenesin. Oxidation of guaifenesin on the surface of the modified electrode was investigated with differential pulse voltammetry and the results showed that the modified electrode remarkably improved sensitivity and selectivity for the electrochemical assay of guaifenesin. Detection limit and quantitation limit were found to be 0.0175 µM and 0.0583 µM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号