首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: In this study, blends of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT) were studied for their mechanical and thermal properties as a function of the PBAT content. Tensile testing, impact testing, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMTA) and scanning electron microscopy (SEM) were used to characterize the blends. It was observed that PLA/PBAT blends maintained quite high modulus and tensile strength compared to pure PLA. Small amounts of PBAT improved the elongation at break and the impact resistance showing a debonding effect typical of rubber toughened systems.  相似文献   

2.
Binary and ternary blends composed of poly (lactic acid) (PLA), thermoplastic starch (TPS) and glycidyl methacrylate grafted poly (ethylene octane) (GPOE) were prepared using Haake Mixer. The mechanical morphology, thermal properties, water absorption, and degradation properties of the blends were also investigated. The elongation at break and impact strength of the ternary blends were greatly increased by the filling of GPOE. Compared to non-GPOE binary blends, the morphology of ternary blends with GPOE indicated that starch granules melted and there was good compatibility between PLA matrix and TPS. The mechanism and schematic diagram of the reactions in PLA, TPS, and GPOE were proposed and proved by testing and observing the morphology. Moreover, the biodegradation and thermal decomposition were studied through compost testing and thermal gravimetric analysis, respectively. Biodegradation results indicated that the blends have the excellent biodegrade ability.  相似文献   

3.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

4.
通过熔融共混法制备了聚乳酸/微生物产β-羟基丁酸酯与β-羟基己酸共聚物的共混物(PLA/PHBHHx).采用拉伸力学试验研究了共混物的力学性能.通过土壤悬浊培养降解法和扫描电子显微镜(SEM)分析对共混材料的生物降解性能进行了研究.实验结果表明,随着PHBHHx含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高.但是,在175h之前,重量组成比为20/80的共混物降解速率比纯PHBHHx还要快.综合分析表明,共混材料PLA/PHBHHx的重量比为20/80时,具有优良的力学性能和生物降解性.  相似文献   

5.
通过熔融共混法制备了聚乳酸/微生物产β-羟基丁酸酯与β-羟基己酸共聚物的共混物(PLA/PHBHHx)。采用拉伸力学试验研究了共混物的力学性能。通过土壤悬浊培养降解法和扫描电子显微镜(SEM)分析对共混材料的生物降解性能进行了研究。实验结果表明,随着PHBHHx含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高。但是,在175h之前,重量组成比为20/80的共混物降解速率比纯PHBHHx还要快。综合分析表明,共混材料PLA/PHBHHx的重量比为20/80时,具有优良的力学性能和生物降解性。  相似文献   

6.
Ternary blends of PLA/PBS/CSW with different weight fractions were prepared using a vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. For the PLA/CSW blend, the tensile strength decreased, the flexural strength and modulus increased compared with pure PLA. For PBS, the addition of CSW had little influence on the mechanical properties. For the ternary blends PLA/PBS/CSW, the tensile strength, flexural strength and modulus decreased compared with pure PLA, while the elongation at break and the impact strength increased significantly. The brittle-ductile transition of the blends took place when the PBS weight fraction reaching 30 wt%. As a soft component in the blends, PBS was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements reveal that PLA/PBS/CSW blends were immiscible. When the weight fraction of PBS was 50 wt%, significant phase separation was observed, and CSW had preferential location in the PBS phase of the blend. DSC measurement and POM observation reveal that CSW had a heterogeneous nucleation effect on PLA and PBS matrix. The addition of PBS improved the crystallization of PLA and the thermal resistance of the PLA/PBS/CSW blends significantly.  相似文献   

7.
《高分子科学》2019,37(12):1273-1282
Polylactide(PLA), methyl methacrylate-butadiene-styrene copolymer(MBS), and poly(propylene carbonate) polyurethane(PPCU) were blended and subjected to blown film process. The rheological, mechanical, morphological, thermal, and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied. Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA. The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m~2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m~2), and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%) was higher by about 45 times that of PLA(6.2%). The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA, and the elongation at break(MD/TD) of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%, whereas that of PLA was only 2.7%/3.0%. POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS. With increasing PPCU content from 5% to 20%, the density of spherulite nucleation increased and the size of crystalline particles decreased continuously, but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30% to 40%. The PLA/MBS/PPCU films exhibited excellent mechanical properties, which expanded the application range of these biodegradable films.  相似文献   

8.
将聚乳酸(PLA)、聚碳酸酯(PPC)及β-羟基丁酸酯与β-羟基戊酸酯共聚物(PHBV)以溶液浇注法制备了各种不同比例的共混膜(60/20/20,40/20/40,40/40/20,20/60/20,20/40/40,20/20/60)。采用示差扫描量热分析(DSC)和热重分析(TG)研究了共混物的热性能,采用万能材料试验机研究了共混物的力学性能,通过土壤悬浊拟环境降解实验和扫描电子显微镜(SEM)研究了共混材料的环境生物降解性能。结果显示,该三元共混体系是部分相容的体系,PLA增加了材料的强度,PPC增加了材料的断裂伸长,PHBV则提高了材料的环境生物降解速率,三者优势互补,是一种有应用前景的生物降解共混体系。  相似文献   

9.
胡宽  江海  黄冬  刘畅  张坤玉  潘莉 《应用化学》2019,36(9):996-1002
以来源于可再生资源聚丁二酸丁二醇酯(PBS)和氯醚橡胶(ECO)作为聚乳酸(PLA)的增韧改性剂,通过熔融共混的方法制备了PLA/PBS/ECO三元共混体系。动态力学分析和扫描电子显微镜结果表明,ECO促进了PBS和PLA之间的相容性。力学性能测试表明,ECO与PBS可实现对聚乳酸基体的协同增韧: PLA/PBS/ECO(70/20/10)显示出最优的拉伸性能,断裂伸长率高达270%;PLA/PBS/ECO(70/10/20)的冲击强度提高至23.7 kJ/m2,是纯聚乳酸的12倍。结合形态结构和冲击断面形貌分析表明ECO的存在可起到增容/增韧双重作用, 与柔性PBS产生良好的协同效应,有效改善聚乳酸材料的韧性。我们的研究表明,构造PLA-柔性生物聚酯和生物基弹性体多元共混体系是一种获得高性能生物基材料简单高效的手段。  相似文献   

10.
This study reports the compatibility of the biobased polymers poly(3-hydroxybutyrate-co-3- -hydroxyhexanoate) (PHBH) and poly(lactic acid) (PLA), as well as the effect of the addition of a reactive epoxy compatibilizer (REC) to the PHBH/PLA blend. The chemical structure, thermal performance, surface morphology and mechanical properties of the blends were measured using fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic thermo-mechanical analysis, thermogravimetric analysis, scanning electron microscopy, and impact and tensile testing.PHBH and PLA were partially compatible, and a PHBH/PLA mass ratio of 80:20 was selected for evaluation with an REC. The REC decreased the difference between the glass-transition temperatures of PHBH and PLA, decreased the particle size of the dispersed phase of the PHBH/PLA blend and produced uniform particle distribution. Moreover, the REC improved the elongation at break and impact strength of the PHBH/PLA blend. These results show that the addition of an REC improves the compatibility of PHBH and PLA.  相似文献   

11.
Blends of Poly(lactic acid) with Thermoplastic Acetylated Starch   总被引:1,自引:0,他引:1  
Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of Tg by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPS content, the elongation at break and impact strength were increased. The elongation at break increased from...  相似文献   

12.
The mechanical properties and morphology of polycarbonate/ethylene-1-octylene copolymer (PC/POE) binary blends and PC/POE/ionomer ternary blends were investigated. The tensile strength and elongation at break of the PC/POE blends decreased with increasing the POE content. The impact strength of the PC/POE blends showed less dependence on thickness than that of PC. And the low-temperature impact strength of PC was modified effectively by addition of POE. The morphology of the PC/POE blends was observed by scanning electron microscope. The PC/POE weight ratio had a great effect on the morphology of the PC/POE blends. For the PC/POE (80/20)/ionomer ternary blends, low content (0.25 and 0.5 phr) of ionomer could increase the tensile properties of PC/POE (80/20) blend and had little effect on the impact strength. And 0.5 phr ionomer made the dispersed domain distribute more uniformly and finely than the blend without it. But with high content of ionomer, the degradation of PC made the mechanical properties of the blends deteriorate. Blending PC and ionomer proved the degradation of PC, and the molecular weight decreased with increasing the ionomer content.  相似文献   

13.
Dynamic vulcanization of polylactide (PLA) with castor oil (CO) and three different diisocyanates, namely 4,4′-diphenylmethane diisocyanate (MDI), hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI), was performed to study the effect of diisocyanate type on the vulcanization process and on the morphology as well as mechanical properties of the PLA/CO-based polyurethane blends. The reactivity of the three diisocyanate followed the order of MDI > HDI > IPDI when reacting with castor oil. Interfacial compatibilization between PLA and the CO-based polyurethane occurred when the less reactive HDI and IPDI was used. Among all the blends, PLA/CO-IPDI showed the finest morphology and the best toughening efficiency. Incorporation of 20 wt% CO-IPDI increased the elongation at break and notched impact strength of PLA by 47.3 and 6.6 times, respectively. Cavitation induced matrix plastic deformation was observed as the toughening mechanism for the PLA blends with CO-based polyurethane. The effect of CO-IPDI content on the morphology and mechanical properties of PLA was studied in detail. The particle size of dispersed CO-IPDI and the elongation at break increased gradually, the tensile strength and Young's modulus decreased gradually, while the impact strength first increased and then decreased with increasing CO-IPDI content from 5 to 30 wt%. The maximum impact strength appeared for the blends with 20 wt% CO-IPDI.  相似文献   

14.
The effect of crystallinity of polylactide (PLA) on the structure and properties of tough PLA blends with PEG-b-PPG-b-PEG block copolymers was studied. PLA was melt blended with a set of the copolymers with varying ratio of the hydrophilic (PEG) and hydrophobic (PPG) blocks. Although the blend phase structure depended on the copolymer molar mass and PEG content, as well as on the copolymer concentration in the blend, crystallinity also played an important role, increasing the copolymer content in the amorphous phase and enhancing phase separation. The influence of crystallinity on the thermal and mechanical properties of the blends depended on the copolymer used and its content. The blends, with PLA crystallinity of 25 ÷ 34 wt%, exhibited relatively high glass transition temperature ranging from 45 to 52 °C, and melting beginning above 120 °C. Although with a few exceptions crystallinity worsened the drawability and toughness, these properties were improved with respect to neat crystalline PLA in the case of partially miscible blends, in which fine liquid inclusions of the modifier were dispersed in PLA rich matrix. About 20-fold increase of the elongation at break and about 4-fold increase of the tensile impact strength were reached at a small content (10 wt%) of the modifier. Moreover, crystallinity decreased oxygen and water vapor transmission rates through neat PLA and the blend, and the barrier property for oxygen of the latter was better than that of neat polymer.  相似文献   

15.
通过溶液浇铸法制备了脂肪族聚碳酸酯与聚乳酸的共混物(PPC/PLA).采用示差热分析(DSC)和热重分析(TG)研究了材料的热性能.采用拉伸力学试验研究了共混物的力学性能.通过土壤悬浊拟环境培养降解实验法和扫描电子显微镜分析(SEM)对共混材料的生物降解性能进行了研究.实验结果表明,随着PPC含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高.但是,在一定的降解时间内,某些比例共混物的降解速率比100%PPC还要快.综合分析表明,PPC/PLA是力学性能和降解性能可以互补的共混体系.  相似文献   

16.
Oligo-ε-caprolactones(o-CL) have been utilized as principle secondary components within poly(lactic acid)[PLA]-based blends as well as additives within larger-sized PCL/PLA blends in an effort to fully complement the mechanical attributes of the respective polyesters. Dynamic mechanical thermal analysis(DMTA) shows that the presence of o-CL plasticizes the PLA non-crystalline phase with a more pronounced effect seen as the size of o-CL is reduced. Moreover, it appears that the size of o-CL could also affect the static mechanical properties of the ternary systems as material stiffness and strength reside between those properties measured for high molecular weight PCL/PLA binary blends and the PLA homopolyester. Future work will examine the ability of these blends to sustain these properties during hydrolytic exposure.  相似文献   

17.
Kong  Weili  Tong  Beibei  Ye  Aolin  Ma  Ruixue  Gou  Jiaomin  Wang  Yaming  Liu  Chuntai  Shen  Changyu 《Journal of Thermal Analysis and Calorimetry》2019,135(6):3107-3114

Poly(lactic acid) (PLA)/poly(ethylene oxide) (PEO) blends nucleated by a self-assembly nucleating agent, N,N′,N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (BTCA), were prepared by melt blending. The crystallization behavior and mechanical properties of the materials were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, dynamic mechanical analyzer and tensile testing. It was found that PEO had a synergistic effect together with BTCA on promoting PLA crystallization, besides its toughening effect on the material. Moreover, BTCA revealed prominent reinforcement effect on both neat PLA and PLA/PEO blends in the glass transition region and above, indicating the improvement on the heat resistance of the materials.

  相似文献   

18.
Phase morphology exerts a tremendous influence on the properties of polymer blends. The development of the blend morphology depends not only on the intrinsic structure of the component polymers but also on extrinsic factors such as viscosity ratio, shearing force and temperature in the melt processing. In this study, various poly (butylene adipate-co-terephthalate) (PBAT) materials with different melt viscosity were prepared, and then poly (lactic acid) (PLA)/PBAT blends with different viscosity ratio were prepared in a counter-rotating twin-screw extruder under constant processing conditions. The influence of viscosity ratio on the morphology, mechanical, thermal and rheological properties of PLA/PBAT (70/30 w/w) blends was investigated. The experimental results showed that the morphology and properties of PLA/PBAT blends strongly depended on the viscosity ratio. Finer size PBAT phase were observed for viscosity ratio less than 1 (λ < 1) compared to samples with λ > 1. It was found that the interfacial tensions of PLA and PBAT were significantly different when the viscosity ratio was changed, the lowest interfacial tensions (0.12 mN/m) was obtained when the viscosity was 0.77. Additionally, the maximal tensile strength in PLA/PBAT blends were obtained when the viscosity ratio was 0.44, while the maximal impact properties were obtained when the viscosity ratio was 1.95.  相似文献   

19.
Poly(lactic acid) (PLA) and polycarbonate (PC) blends were prepared by melt processing with a twin-screw extruder. Ethylene-maleic anhydride-glycidyl methacrylate terpolymer (EMG) as compatibilizer and talc as nucleation agent were added in PLA/PC blends. The effect of EMG and talc on the mechanical properties including tensile, flexural, Izod notched impact properties and heat deflection temperature (HDT) of PLA/PC blends were investigated. The morphologies were observed by scanning electron microscopy (SEM). The crystalline behavior of PLA/PC blends was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The nanoscale mechanical properties of PLA/PC blends were investigated by atomic force microscope (AFM). The results showed that the addition of EMG and talc simultaneously with annealing treatment is the most effective process.  相似文献   

20.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号