首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

Purpose

To assess the feasibility and to optimize imaging parameters of diffusion kurtosis imaging (DKI) in human kidneys.

Methods

The kidneys of ten healthy volunteers were examined on a clinical 3 T MR scanner. For DKI, respiratory triggered EPI sequences were acquired in the coronal plane (3 b-values: 0, 300, 600 s/mm2, 30 diffusion directions). A goodness of fit analysis was performed and the influence of the signal-to-noise ratio (SNR) on the DKI results was evaluated. Region-of-interest (ROI) measurements were performed to determine apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean kurtosis (MK) of the cortex and the medulla of the kidneys. Intra-observer and inter-observer reproducibility using Bland-Altman plots as well as subjective image quality of DKI were examined and ADC, FA, and MK parameters were compared.

Results

The DKI model fitted better to the experimental data (r = 0.99) with p < 0.05 than the common mono-exponential ADC model (r = 0.96).Calculation of reliable kurtosis parameters in human kidneys requires a minimum SNR of 8.31 on b = 0 s/mm2 images.Corticomedullary differentiation was possible on FA and MK maps. ADC, FA and MK revealed significant differences in medulla (ADC = 2.82 × 10− 3 mm2/s ± 0.25, FA = 0.42 ± 0. 05, MK = 0.78 ± 0.07) and cortex (ADC = 3.60 × 10− 3 mm2/s ± 0.28, FA = 0.18 ± 0.04, MK = 0.94 ± 0.07) with p < 0.001.

Conclusion

Our initial results indicate the feasibility of DKI in the human kidney presuming an adequate SNR. Future studies in patients with kidney diseases are required to determine the value of DKI for functional kidney imaging.  相似文献   

2.

Purpose

The purpose of this study was to investigate the combined effect of hypertension and type 2 diabetes mellitus (DM2) on aortic stiffness and endothelial dysfunction by using an integrated MRI approach.

Materials and Methods

A total of 31 non-hypertensive DM2 patients and 31 hypertensive DM2 patients underwent 3.0-T MRI. Aortic distensibility (AD), pulse wave velocity (PWV) and brachial artery flow-mediated dilation (FMD) were assessed. Student's t-test, Mann–Whitney U test, chi-squared test, Pearson correlation analysis, and univariable and multiple linear regression analyses were used for statistical analyses.

Results

The hypertensive patients showed lower AD at multiple levels (ascending aorta [AA]: 2.07 ± 0.98 × 10− 3 mm Hg− 1 vs. 3.21 ± 1.70 × 10− 3 mm Hg− 1, p < 0.01; proximal thoracic descending aorta [PDA]: 2.58 ± 0.72 × 10− 3 mm Hg− 1 vs. 3.58 ± 1.47 × 10− 3 mm Hg− 1, p < 0.01; distal descending aorta [DDA]: 3.11 ± 1.84 × 10− 3 mm Hg− 1 vs. 4.27 ± 1.75 × 10− 3 mm Hg− 1, p < 0.01); faster PWV (7.46 ± 2.28 m/s vs. 5.82 ± 1.12 m/s, p < 0.05) and lower FMD (12.67% ± 6.49% vs. 20.66% ± 9.7%; p < 0.01). Systolic blood pressure was an independent predictor of PWV, AA-AD, DDA-AD and FMD. FMD was statistically significantly associated with PWV (r = − 0.37, p < 0.01) and AD (p < 0.01).

Conclusions

Hypertension has a contributive effect on aortic stiffness and endothelial dysfunction in DM2 patients.  相似文献   

3.

Introduction

Cardiac magnetic resonance (CMR) is a unique method to determine regional and local aortic stiffness parameters. Although various methods have been validated, there are no data in patients after acute ST-segment elevation myocardial infarction (STEMI). In the present study we assessed the feasibility of different CMR derived measures of aortic stiffness in patients after first acute STEMI for the first time.

Methods

CMR derived aortic pulse wave velocity (PWV) determined by the regional transit-time (PWVTT) and local flow-area (PWVQA) method as well as local distensibility coefficients (DCs) was analyzed in 22 healthy young volunteers and 28 patients with recent acute STEMI.

Results

PWVTT and DC of the ascending aorta differed significantly between healthy subjects and STEMI patients (all p < 0.001). PWVQA at thoracic levels of aorta was not different between groups (p > 0.520) and did not correlate with age (p > 0.149) and PWVTT (p > 0.310). Intra- and interobserver variability was high for PWVTT (r = 0.970, p < 0.001 and r = 0.920, p < 0.001), acceptable for DC (all r > 0. 809, p < 0.001 and all r > 0.510, p < 0.001) but low for thoracic PWVQA (all r < 0.330 and all r < 0.372).

Conclusion

PWVTT and local DC are robust methods for the assessment of aortic stiffness in patients after acute STEMI.  相似文献   

4.

Objectives

To investigate and optimize diffusion-weighted imaging (DWI) acquisitions for pancreatic cancer at 3.0 T.

Methods

Forty-five patients with pancreatic cancer were examined by four DWI acquisitions with b values = 0 and 600 s/mm2 at 3.0 T, including breath-holding DWI (BH-DWI), respiratory-triggered DWI (TRIG-DWI), respiratory-triggered DWI with inversion–recovery technique (TRIGIR-DWI), and free-breathing DWI with inversion–recovery technique (FBIR-DWI). Artifacts, contrast ratio (CR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) of pancreatic cancer were statistically compared among DWI acquisitions.

Results

TRIGIR-DWI displayed the lowest artifacts and highest CR compared to other DWI acquisitions. CNRs of pancreatic cancer in TRIG-DWI and TRIGIR-DWI were statistically higher than that in FBIR-DWI and BH-DWI. Different ADCs between pancreatic cancer and noncancerous pancreatic tissues were noticed by a paired-samples T test in TRIG-DWI (p = 0.017), TRIGIR-DWI (p = 0.00001) and FBIR-DWI (p = 0.000041).

Conclusions

TRIGIR-DWI may be the optimal acquisition of DWI for pancreatic cancer at 3.0 T.  相似文献   

5.

Purpose

The objective of this study was to compare multiple methods for estimation of PWV from 4D flow MRI velocity data and to investigate if 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time is sufficient to discern age-related regional differences in PWV.

Methods

4D flow MRI velocity data were acquired in 8 young and 8 older (age: 23 ± 2 vs. 58 ± 2 years old) normal volunteers. Travel-time and travel-distance were measured throughout the aorta and piecewise linear regression was used to measure global PWV in the descending aorta and regional PWV in three equally sized segments between the top of the aortic arch and the renal arteries. Six different methods for extracting travel-time were compared.

Results

Methods for estimation of travel-time that use information about the whole flow waveform systematically overestimate PWV when compared to methods restricted to the upslope-portion of the waveforms (p < 0.05). In terms of regional PWV, a significant interaction was found between age and location (p < 0.05). The age-related differences in regional PWV were greater in the proximal compared to distal descending aorta.

Conclusion

Care must be taken as different classes of methods for the estimation of travel-time produce different results. 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time can discern age-related differences in regional PWV well in line with previously reported data.  相似文献   

6.

Aims

The objective of this study was to evaluate the potential of 4D flow MRI to assess valve effective orifice area (EOA) in patients with aortic stenosis as determined by the jet shear layer detection (JSLD) method.

Methods and Results

An in-vitro stenosis phantom was used for validation and in-vivo imaging was performed in 10 healthy controls and 40 patients with aortic stenosis. EOA was calculated by the JSLD method using standard 2D phase contrast MRI (PC-MRI) and 4D flow MRI measurements (EOAJSLD-2D and EOAJSLD-4D, respectively). As a reference standard, the continuity equation was used to calculate EOA (EOACE) with the 2D PC-MRI velocity field and compared to the EOAJSLD measurements. The in-vitro results exhibited excellent agreement between flow theory (EOA = 0.78 cm2) and experimental measurement (EOAJSLD-4D = 0.78 ± 0.01 cm2) for peak velocities ranging from 0.9 to 3.7 m/s. In-vivo results showed good correlation and agreement between EOAJSLD-2D and EOACE (r = 0.91, p < 0.001; bias: − 0.01 ± 0.38 cm2; agreement limits: 0.75 to − 0.77 cm2), and between EOAJSLD-4D and EOACE (r = 0.95, p < 0.001; bias: − 0.09 ± 0.26 cm2; limits: 0.43 to − 0.62 cm2).

Conclusion

This study demonstrates the feasibility of measuring EOAJSLD using 4D flow MRI. The technique allows for optimization of the EOA measurement position by visualizing the 3D vena contracta, and avoids potential sources of EOACE measurement variability.  相似文献   

7.

Purpose

To evaluate whether a non-linear blood ΔR2*-versus-concentration relationship improves quantitative cerebral blood flow (CBF) estimates obtained by dynamic susceptibility contrast (DSC) MRI in a comparison with Xe-133 SPECT CBF in healthy volunteers.

Material and Methods

Linear as well as non-linear relationships between ΔR2* and contrast agent concentration in blood were applied to the arterial input function (AIF) and the venous output function (VOF) from DSC-MRI. To reduce partial volume effects in the AIF, the arterial time integral was rescaled using a corrected VOF scheme.

Results

Under the assumption of proportionality between the two modalities, the relationship CBF(MRI) = 0.58CBF(SPECT) (r = 0.64) was observed using the linear relationship and CBF(MRI) = 0.51CBF(SPECT) (r = 0.71) using the non-linear relationship.

Discussion

A smaller ratio of the VOF time integral to the AIF time integral and a somewhat better correlation between global DSC-MRI and Xe-133 SPECT CBF estimates were observed using the non-linear relationship. The results did not, however, confirm the superiority of one model over the other, potentially because realistic AIF signal data may well originate from a combination of blood and surrounding tissue.  相似文献   

8.

Object

To assess the feasibility of measuring diffusion and perfusion fraction in vertebral bone marrow using the intravoxel incoherent motion (IVIM) approach and to compare two fitting methods, i.e., the non-negative least squares (NNLS) algorithm and the more commonly used Levenberg–Marquardt (LM) non-linear least squares algorithm, for the analysis of IVIM data.

Materials and Methods

MRI experiments were performed on fifteen healthy volunteers, with a diffusion-weighted echo-planar imaging (EPI) sequence at five different b-values (0, 50, 100, 200, 600 s/mm2), in combination with an STIR module to suppress the lipid signal. Diffusion signal decays in the first lumbar vertebra (L1) were fitted to a bi-exponential function using the LM algorithm and further analyzed with the NNLS algorithm to calculate the values of the apparent diffusion coefficient (ADC), pseudo-diffusion coefficient (D*) and perfusion fraction.

Results

The NNLS analysis revealed two diffusion components only in seven out of fifteen volunteers, with ADC = 0.60 ± 0.09 (10− 3 mm2/s), D* = 28 ± 9 (10− 3 mm2/s) and perfusion fraction = 14% ± 6%. The values obtained by the LM bi-exponential fit were: ADC = 0.45 ± 0.27 (10− 3 mm2/s), D* = 63 ± 145 (10− 3 mm2/s) and perfusion fraction = 27% ± 17%. Furthermore, the LM algorithm yielded values of perfusion fraction in cases where the decay was not bi-exponential, as assessed by NNLS analysis.

Conclusion

The IVIM approach allows for measuring diffusion and perfusion fraction in vertebral bone marrow; its reliability can be improved by using the NNLS, which identifies the diffusion decays that display a bi-exponential behavior.  相似文献   

9.

Purpose

There are pros and cons to the use of gadoxetic acid in hepatocellular carcinoma (HCC) workup due to the potential for high false positive diagnosis. This study was conducted to investigate the preoperative diagnostic performance of gadoxetic acid-enhanced MRI protocol including diffusion-weighted imaging (DWI) with emphasis on tumor characterization developed in high risk HCC patients.

Materials and methods

We included 144 patients (102 men, 42 women; age range 33–74 years) with chronic viral hepatitis or cirrhosis and 183 focal hepatic tumors (size range, 0.4–11.0 cm; mean, 3.2 cm), including 148 HCCs, 13 cholangiocarcinomas, 12 hemangiomas, three hepatocellular adenomas, two focal nodular hyperplasias, and five other tumors. All patients underwent gadoxetic acid-enhanced MRI protocol with DWI. MRIs were independently interpreted by three observers for the detection and characterization of hepatic tumors.

Results

Sensitivities for detecting all 183 liver tumors were 98.4%, 97.8%, and 96.2% for each observer, respectively, with a 97.5% for pooled data. Among 183 hepatic tumors, 91.3% (n = 167), 87.4% (n = 160), and 86.9% (n = 159) were correctly characterized according to their reference standard by each observer, respectively. In 13 cholangiocarcinomas, one to three were misinterpreted as HCC, and the remaining tumors were correctly characterized by each observer. The accuracies (Az) of MRI for HCC diagnosis were 0.952 for observer 1, 0.906 for observer 2, and 0.910 for observer 3, with 0.922 for pooled data. There was good inter-observer agreement.

Conclusion

The gadoxetic acid-enhanced MRI including DWI showed a reasonable performance for tumor characterization with high sensitivity for tumor detection in patients with chronic liver disease, despite concerns of high false positive diagnosis of hypervascular tumors.  相似文献   

10.

Purpose

To investigate the relationship between estimated glomerular filtration rate (eGFR) and parameters calculated using intravoxel incoherent motion (IVIM) imaging of the kidneys.

Materials and Methods

We studied 365 patients, divided into 4 groups based on eGFR levels (mL/min/1.73 m2): group 1, eGFR ≥ 80(n = 80); group 2, eGFR 60–80 (n = 156); group 3, eGFR 30–60 (n = 114); and group 4 ,eGFR < 30 (n = 15). IVIM imaging was used to acquire diffusion-weighted images at 12 b values. The diffusion coefficient of pure molecular diffusion (D), the diffusion coefficient of microcirculation or perfusion (D*), and perfusion fraction (f) were compared among the groups using group 1 as control.

Results

In the renal cortex, D* values were significantly lower in groups 2, 3, and 4 than in group 1. The D value of renal cortex was significantly low in only group 3. In the renal medulla, the D* and D values were significantly lower only in groups 2 and 3, respectively.

Conclusion

As renal dysfunction progresses, renal perfusion might be reduced earlier and affected more than molecular diffusion in the renal cortex. These changes are effectively detected by IVIM MR imaging.  相似文献   

11.

Purpose

To report the observation of brown adipose tissue (BAT) with low fat content in neonates with hypoxic–ischemic encephalopathy (HIE) after they have undergone hypothermia therapy.

Materials and Methods

The local ethics committee approved the imaging study. Ten HIE neonates (3 males, 7 females, age range: 2–3 days) were studied on a 3-T MRI system using a low-flip-angle (3°) six-echo proton-density-weighted chemical-shift-encoded water-fat pulse sequence. Fat-signal fraction (FF) measurements of supraclavicular and interscapular (nape) BAT and adjacent subcutaneous white adipose tissues (WAT) were compared to those from five non-HIE neonates, two recruited for the present investigation and three from a previous study.

Results

In HIE neonates, the FF range for the supraclavicular, interscapular, and subcutaneous regions was 10.3%–29.9%, 28.0%–57.9%, and 62.6%–88.0%, respectively. In non-HIE neonates, the values were 23.7%–42.2% (p = 0.01), 45.4%–59.5% (p = 0.06), and 67.8%–86.3% (p = 0.38), respectively. On an individual basis, supraclavicular BAT FF was consistently the lowest, interscapular BAT values were higher, and subcutaneous WAT values were the highest (p < 0.01).

Conclusion

We speculate that hypothermia therapy in HIE neonates likely promotes BAT-mediated non-shivering thermogenesis, which subsequently leads to a depletion of the tissue's intracellular fat stores. We believe that this is consequently reflected in lower FF values, particularly in the supraclavicular BAT depot, in contrast to non-HIE neonates.  相似文献   

12.

Purpose

The objective of this paper was to investigate the value of apparent diffusion coefficients (ADCs) for differential diagnosis among solid pancreatic masses using respiratory triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique (RT-IR-DWI) at 3.0 T.

Materials and Methods

20 normal volunteers and 72 patients (Pancreatic ductal adenocarcinoma [PDCA, n = 30], mass-forming pancreatitis [MFP, n = 15], solid pseudopapillary neoplasm [SPN, n = 12], and pancreatic neuroendocrine tumor[PNET, n = 15]) underwent RT-IR-DWI (b values: 0 and 600 s/mm2) at 3.0 T. Results were correlated with histopathologic data and follow-up imaging. ADC values among different types of pancreatic tissue were statistically analyzed and compared.

Results

Statistical difference was noticed in ADC values among normal pancreas, MFP, PDCA, SPN and PNET by ANOVA (p < .001). Normal pancreas had the highest ADC value, then followed by PNET, PDCA, MFP and SPN. There was noticeable statistical difference in ADC values among PDCA, MFP and normal pancreas by Least Significant Difference (LSD) (p < .001). ADC of SPN was statistically lower than that of PNET (p = 0.1800 × 10− 4), PDCA (p = 0.0300 × 10− 4) and normal pancreas (p = 0.0007 × 10− 4). ADC of PNET was statistically lower than that of normal pancreas (p = 0.0360) and higher than that of MFP (p = 9.3000 × 10− 4).

Conclusions

ADC measurements using RT-IR-DWI at 3.0 T may aid to disclose the histopathological pattern of normal pancreas and solid pancreatic masses, which may be helpful in characterizing solid pancreatic lesions.  相似文献   

13.

Purpose

To classify tumor imaging voxels at-risk for treatment failure within the heterogeneous cervical cancer using DCE MRI and determine optimal voxel's DCE threshold values at different treatment time points for early prediction of treatment failure.

Material and Method

DCE-MRI from 102 patients with stage IB2–IVB cervical cancer was obtained at 3 different treatment time points: before (MRI 1) and during treatment (MRI 2 at 2–2.5 weeks and MRI 3 at 4–5 weeks). For each tumor voxel, the plateau signal intensity (SI) was derived from its time-SI curve from the DCE MRI. The optimal SI thresholds to classify the at-risk tumor voxels was determined by the maximal area under the curve using ROC analysis when varies SI value from 1.0 to 3.0 and correlates with treatment outcome.

Results

The optimal SI thresholds for MRI 1, 2 and 3 were 2.2, 2.2 and 2.1 for significant differentiation between local recurrence/control, respectively, and 1.8, 2.1 and 2.2 for death/survival, respectively.

Conclusion

Optimal SI thresholds are clinically validated to quantify at-risk tumor voxels which vary with time. A single universal threshold (SI = 1.9) was identified for all 3 treatment time points and remained significant for the early prediction of treatment failure.  相似文献   

14.

Rationale and Objectives

To compare the apparent diffusion coefficient (ADC) and the perfusion fraction measured by intra-voxel incoherent motion (IVIM) Magnetic Resonance Imaging (MRI) with liver fibrosis degrees in a rodent model.

Materials and Methods

All experiments received approval from our institutional animal care and use committee. Liver fibrosis was induced in 13 rats by oral gavage with diethylnitrosamine; 4 untreated rats with normal livers were used as controls. Diffusion Weighted MRI was performed and 8 gradient factors (0, 50, 100, 150, 200, 300, 400 and 500 s/mm2) were acquired. The values of ADC, true diffusion coefficient D and perfusion fraction f were measured based on Li Bihan’s method. The percentage of liver fibrosis was assessed via quantitative analysis of Masson trichrome staining using an average of 30 fields per section. The MRI measurements were compared to the histological fibrotic grade to evaluate the correlation between them.

Results

ADC contained the contribution of diffusion and perfusion. The ADC and f values decreased significantly with the increasing fibrosis level (correlation coefficient: ADC: ρ = − 0.781, p < 0.001; f: ρ = − 0.720, p = 0.001); but D was poorly correlated with fibrosis level (ρ = − 0.502, p = 0.040).

Conclusion

The hepatic ADC and the perfusion fraction f were significantly correlated with the liver fibrosis level; however, D was not. This might suggest that hepatic perfusion is altered during the progression of hepatic fibrosis.  相似文献   

15.

Objective

The purpose of this study was to assess the influence of liver cirrhosis and portal hypertension on diffusion coefficients of the spleen.

Material and Methods

We retrospectively evaluated 50 patients with liver cirrhosis and 50 patients without any history of liver disease who underwent magnetic resonance imaging of the upper abdomen, including echo planar diffusion-weighted imaging using b values of 50, 300 and 600 mm2/s. Spleen apparent diffusion coefficient (ADC), liver ADC, muscle ADC and normalized spleen ADC (defined as the ratio of spleen ADC to muscle ADC) were compared between cirrhotic patients and patients in the control group and correlated with Child–Pugh stages. Reproducibility was assessed by measuring interclass correlation coefficient (n = 11). Additionally, in eight patients, ADC measurements were performed 1 day before and 3 days after transjugular intrahepatic portosystemic shunt (TIPSS) implantation.

Results

Compared with control subjects, patients with cirrhosis and portal hypertension had significantly higher spleen ADCs (P = .0001). There was a statistically significant correlation between Child–Pugh grade and spleen ADC (Pearson correlation coefficient, observer 1 r = 0.6, P = .0001; observer 2 r = 0.5, P = .0001). After TIPSS implantation, we observed a reduction in spleen ADC values. Spleen ADC measurements showed a high reproducibility (interclass correlation coefficient 0.75, P = .001).

Conclusion

Our data suggest that different stages of liver cirrhosis and portal hypertension correlate with ADC values of the spleen. Furthermore, ADC values of the spleen decrease after TIPSS implantation. Further studies are required to understand the potential clinical values of these observations.  相似文献   

16.

Objective

To evaluate the correlation between findings from diffusion weighted imaging (DWI) and microvascular density (MVD) measurements in VX2 liver tumors after transarterial embolization ablation (TEA).

Materials and Methods

Eighteen New Zealand white rabbits were used in this study. VX2 tumor cells were implanted in livers by percutaneous puncture under computed tomography (CT) guidance. Two weeks later, all rabbits underwent conventional magnetic resonance imaging (MRI) (T1 and T2 imaging), DWI, (b = 100, 600, and 1000 s/mm2) and TEA. MRI was performed again1 week after TEA. Liver tissue was then harvested and processed for hematoxylin and eosin (H&E) staining and immunohistochemical staining for CD31to determine MVD.

Results

VX2 liver tumors were successfully established in all 18 rabbits. Optimal contrast was achieved with a b value of 600 s/mm2.The maximum pre-operative apparent diffusion coefficient (ADC)difference value was 0.28 × 10− 3 ± 0.10 × 10− 3 mm2/s, and was significantly different (P < 0.001) from the maximum postoperative ADCdifference value of 0.47 × 10− 3 ± 0.10 × 10− 3 mm2/s. However, the mean ADC value for the entire tumor was not significantly correlated with MVD (r = 0.221, P = 0.379), nor was the ADC value for the regions of viable tumor (r = − 0.044, P = 0.862). However, the maximum postoperative ADCdifference value was positively correlated with MVD(r = 0.606, F = 12.247, P = 0.003).

Conclusion

DWI is effective to evaluate the therapeutic efficacy of TEA. The maximum ADCdifference offers a promising new method to noninvasively assess tumor angiogenesis.  相似文献   

17.

Purpose

To investigate an effective time-resolved variable-density random undersampling scheme combined with an efficient parallel image reconstruction method for highly accelerated aortic 4D flow MR imaging with high reconstruction accuracy.

Materials and Methods

Variable-density Poisson-disk sampling (vPDS) was applied in both the phase-slice encoding plane and the temporal domain to accelerate the time-resolved 3D Cartesian acquisition of flow imaging. In order to generate an improved initial solution for the iterative self-consistent parallel imaging method (SPIRiT), a sample-selective view sharing reconstruction for time-resolved random undersampling (STIRRUP) was introduced. The performance of different undersampling and image reconstruction schemes were evaluated by retrospectively applying those to fully sampled data sets obtained from three healthy subjects and a flow phantom.

Results

Undersampling pattern based on the combination of time-resolved vPDS, the temporal sharing scheme STIRRUP, and parallel imaging SPIRiT, were able to achieve 6-fold accelerated 4D flow MRI with high accuracy using a small number of coils (N = 5). The normalized root mean square error between aorta flow waveforms obtained with the acceleration method and the fully sampled data in three healthy subjects was 0.04 ± 0.02, and the difference in peak-systolic mean velocity was − 0.29 ± 2.56 cm/s.

Conclusion

Qualitative and quantitative evaluation of our preliminary results demonstrate that time-resolved variable-density random sampling is efficient for highly accelerating 4D flow imaging while maintaining image reconstruction accuracy.  相似文献   

18.

Purpose

To evaluate the non-Gaussian water diffusion properties of prostate cancer (PCa) and determine the diagnostic performance of diffusion kurtosis (DK) imaging for distinguishing PCa from benign tissues within the peripheral zone (PZ), and assessing tumor lesions with different Gleason scores.

Materials and Methods

Nineteen patients who underwent diffusion weighted (DW) magnetic resonance imaging using multiple b-values and were pathologically confirmed with PCa were enrolled in this study. Apparent diffusion coefficient (ADC) was derived using a monoexponential model, while diffusion coefficient (D) and kurtosis (K) were determined using a DK model. Differences between the ADC, D and K values of benign PZ and PCa, as well as those of tumor lesions with Gleason scores of 6, 7 and ≥ 8 were assessed. Correlations between parameters D and K in PCa were analyzed using Pearson’s correlation coefficient. ADC, D and K values were correlated with Gleason scores of 6, 7 and ≥ 8, respectively.

Results

ADC and D values were significantly (p < 0.001) lower in PCa (0.79 ± 0.14 μm2/ms and 1.56 ± 0.23 μm2/ms, respectively) compared to benign PZ (1.23 ± 0.19 μm2/ms and 2.54 ± 0.24 μm2/ms, respectively). K values were significantly (p < 0.001) greater in PCa (0.96 ± 0.20) compared to benign PZ (0.59 ± 0.08). D and K showed fewer overlapping values between benign PZ and PCa compared to ADC. There was a strong negative correlation between D and K values in PCa (Pearson correlation coefficient r = − 0.729; p < 0.001). ADC and K values differed significantly in tumor lesions with Gleason scores of 6, 7 and ≥ 8 (p < 0.001 and p = 0.001, respectively), although no significant difference was detected for D values (p = 0.325). Significant correlations were found between the ADC value and Gleason score (r = − 0.828; p < 0.001), as well as the K value and Gleason score (r = 0.729; p < 0.001).

Conclusion

DK model may add value in PCa detection and diagnosis. K potentially offers a new metric for assessment of PCa.  相似文献   

19.

Purpose

To investigate the value of apparent diffusion coefficient (ADC) to predict and monitor the therapy response for cervical cancer patients receiving concurrent radiochemotherapy, and to analyze the influence of different b-value combinations on ADC-based evaluation of treatment response.

Material and Methods

Seventy-five cervical cancer patients treated with radiochemotherapy received conventional MRI and DWI prior to therapy, after 2 weeks of therapy, after four weeks of therapy and after therapy completion. Treatment response was classified as complete response (CR, n = 35), partial response (PR, n = 22) and stable disease (SD, n = 18), which was determined according to final tumor size after 6 months of therapy completion. Dynamic changes of apparent diffusion coefficients (ADC) and tumor size in the three tumor groups were observed and compared. All the ADCs were calculated from b = 0, 600 s/mm2 and b = 0, 1000 s/mm2.

Results

The ADC increased percentage was higher in CR group than those in PR and SD groups after two weeks and four weeks of therapy, with significant differences in absolute ADCs between CR and PR, SD groups after therapy completion; the overall discriminatory capability for differentiation of CR and PR, SD groups was higher for high b-value combination (0, 1000 s/mm2) than for low b-value combination (0, 600 s/mm2).

Conclusion

DWI can be used as a predictive and monitoring biomarker of treatment response to radiochemotherapy in patients with cervical cancer. High b-value combination may be more reliable to evaluate the treatment response for cervical cancer.  相似文献   

20.

Introduction

It is generally assumed that intracranial volume (ICV) remains constant after peaking in early adulthood. Thus ICV is used as a ‘proxy’ for original brain size when trying to estimate brain atrophy in older people in neuroimaging studies. However, physiological changes in the skull, such as thickening of the frontal inner table, are relatively common in older age and will reduce ICV. The potential influence that inner table skull thickening may have on ICV measurement in old age has yet to be investigated.

Methods

We selected 60 (31 males, 29 females) representative older adults aged 71.1–74.3 years from a community-dwelling ageing cohort, the Lothian Birth Cohort 1936. A semi-automatically derived current ICV measurement obtained from high resolution T1-weighted volume scans was compared to the estimated original ICV by excluding inner skull table thickening using expert manual image processing.

Results

Inner table skull thickening reduced ICV from an estimated original 1480.0 ml to a current 1409.1 ml, a median decrease of 7.3% (Z = − 6.334; p < 0.001), and this reduction was more prominent in women than men (median decrease 114.6 vs. 101.9 ml respectively). This led to potential significant underestimations of brain atrophy in this sample by 5.3% (p < 0.001) and obscured potential gender differences.

Conclusions

The effects of skull thickening are important to consider when conducting research in ageing, as they can obscure gender differences and result in underestimation of brain atrophy. Research into reliable methods of determining the estimated original ICV is required for research into brain ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号