首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured Pr8Fe86−xVxB6−yCy (x=0, 1; y=0, 1) ribbons composed of Pr2Fe14B and α-Fe phases with a high coercivity are fabricated by direct melt spinning. The effects of a single addition of V and a combined addition of V and C on the structures and magnetic properties of melt-spun Pr8Fe86VB6−xCx (x=0 and 1) ribbons have been investigated. Compared with addition-free ribbons, 1 at% V addition is found to reduce the grain sizes of the samples and improve their magnetic properties due to a strong exchange coupling between the hard and the soft phase. A remanence ratio of 0.82, a coercive field of 6.2 kOe and a maximum energy product of 23.4 MGOe in melt-spun Pr8Fe85VB6 ribbons are obtained at room temperature. The combined addition of V and C is found to lead to the formation of an intermediate phase of VC at grain boundaries, which appears as a pinning barrier during magnetization and results in an increase of the coercivity value to 6.9 kOe for melt-spun Pr8Fe85VB5C ribbons.  相似文献   

2.
Nanostructured Nd9.5Fe84−xB6.5Tax (x=0, 0.5, 1, 1.5, and 2) ribbons composed of Nd2Fe14B and α-Fe phases with a high coercivity and maximum energy product are fabricated by direct melt spinning. The effects of Ta addition on the structures and magnetic properties of melt-spun Nd9.5Fe84−xB6.5Tax (x=0, 0.5, 1, 1.5, and 2) ribbons have been investigated. Compared with addition-free ribbons, small addition of Ta is found to reduce the grain sizes of the samples and improve their magnetic properties due to a strong exchange coupling between the Nd2Fe14B hard phase and α-Fe soft phase. A coercive field of 750 kA/m and a maximum energy product of 158 kJ/m3 in melt-spun Nd9.5Fe82.5B6.5Ta1.5 ribbons are obtained at room temperature.  相似文献   

3.
Structural and magnetic properties of two rapidly solidified and post-annealed Fe60Pt15B25 and Fe60Pt25B15 alloys are compared. The as-quenched Fe60Pt15B25 ribbon was fully amorphous whereas in the Fe60Pt25B15 alloy the amorphous phase coexists with an fcc FePt disordered solid solution. Differential scanning calorimetry curves of both alloys reveal a single exothermal peak with onset temperatures of 873 and 847 K for Fe60Pt15B25 and Fe60Pt25B15, respectively. Magnetically hard, tetragonal ordered L10 FePt and magnetically soft Fe2B nanocrystalline phases were formed due to the annealing of the alloys, as indicated by X-ray diffraction and Mössbauer spectroscopy measurements. Two-phase behavior was detected in the temperature dependence of magnetization of the annealed samples. A magnetic hardening was observed for all annealed ribbons. Magnetic properties of the annealed alloys, studied by hysteresis loop measurements, were related to the differences in the relative fractions of the hard and soft magnetic phases calculated from Mössbauer spectra. The alloy with 25 at% Pt exhibits better hard magnetic properties (Hc=437 kA/m, Mr/Ms=0.74) than the alloy with smaller Pt content (Hc=270 kA/m, Mr/Ms=0.73) mainly due to the larger abundance of the ordered tetragonal FePt phase.  相似文献   

4.
The phases, microstructure, and magnetic properties of Co80Zr18−xNbxB2 (x=1, 2, 3, and 4) melt-spun ribbons were investigated. The small substitution of Nb for Zr in the Co–Zr–B melt-spun ribbons resulted in the improvement of magnetic properties, especially the coercivity. The main effect of added Nb on the coercovity of Co–Zr–Nb–B melt-spun ribbons, originated from modification of the grain size of Co11Zr2 phase. The coercivity of the Co–Zr–Nb–B melt-spun ribbons depends on the annealing temperature. The optimal magnetic properties of Hc=5.1 kOe, and (BH)max=3.4 MGOe were obtained in the Co80Zr15Nb3B2 melt-spun ribbons annealed at 600 °C for 3 min.  相似文献   

5.
Nanocrystalline Nd16Fe76−xTixB8 hard magnetic powders were prepared by mechanical alloying and respective heat treatment at 973–1073 K /30–60 min. The nanocrystalline hard magnetic powders were investigated by the NanoSight Halo LM10TM Nanoparticle Analysis System, AFM, SEM and Mössbauer spectrometry. The nanocrystals have average size of 40 nm and the crystals form agglomerates with an average size of about 180 nm. HaloTM, AFM and SEM techniques are the complementary methods, which give comparable results.  相似文献   

6.
The structure and magnetic properties of the melt-spun ribbons of Tb0.27Dy0.73Fex alloy are investigated as a function of various wheel speeds during melt-quenching using a single-roll technique. It is found that Tb0.27Dy0.73Fex alloy is difficult to be fabricated as amorphous state by using the melt-quenching method. X-ray diffractions show that all these ribbons for x=1.7−2.0 are the MgCu2-type phase at the wheel speed of 45 m s−1. For Tb0.27Dy0.73Fex alloy, the high wheel speed is beneficial to eliminate the RFe3 phase and form the perfect MgCu2-type phase. Compared with the bulk of Tb0.27Dy0.73Fe1.95, these ribbons exhibit higher intrinsic coercivity value and their saturation magnetizations increase as well. The magnetostriction of Tb0.27Dy0.73Fe1.95 composite with 4% epoxy resin is 640×10−6 at 900 kA m−1.  相似文献   

7.
The Fe63B23Nd7Y3Nb3Cr1 nanocomposite magnets in the form of sheets have been prepared by copper mold casting technique. The phase evolution, crystal structure, microstructural and magnetic properties have been investigated in the as-cast and annealed states. The as-cast sheets show magnetically soft behaviors which become magnetically hard by thermal annealing. The optimal annealed microstructure was composed of nanosize soft magnetic α-Fe (19-29 nm) and hard magnetic Nd2Fe14B (45-55 nm) grains. The best hard magnetic properties such as intrinsic coercivity, jHc of 1119 kA/m, remanence, Br of 0.44 T, magnetic induction to saturation magnetization ratio, Mr/Ms=0.61 and maximum energy product, (BH)max of 55 kJ/m3 was obtained after annealing at 680 °C for 15 min. The annealing treatment above 680 °C results in non-ideal phase grains growth, which degrade the magnetic properties.  相似文献   

8.
The crystallization of single-phase nanocrystalline Nd10.8Dy1.5Fe79.7(NbZrCu)2.0B6.0 ribbons has been investigated. The as-spun ribbons are mainly composed of an amorphous matrix with a small amount of α-Fe, Nd2Fe14B and/or other crystallization phases. Cu-enriched clusters with different sizes have been found in the as-spun ribbons. These clusters almost disappear after crystallization, which can possess effects on the refinement of grains.  相似文献   

9.
The phases and magnetic properties of Co-Zr-Ti melt-spun ribbons were studied by XRD analysis and magnetic measurements. The optimal magnetic properties of Ms=59.0 emu/g, Mr=4.0 kG, Hc=2.9 kOe, and (BH)max=3.0 MGOe were obtained in Co82Zr14Ti4 ribbons produced at a wheel speed of 30 m/s. In this work, we found that Ti was one of the few large atomic radius elements, which could improve hard magnetic properties of Co-Zr alloy.  相似文献   

10.
In this paper, compact bulk nanocomposite Nd2Fe14B/α-Fe magnetic materials were prepared by hot extrusion of amorphous and nanocrystalline powders, which were prepared by high-energy ball-milling (HEBM) of the Nd2Fe14 B-type hard magnetic phase with 20 vol% of α-Fe as soft magnetic phase. The extrusion temperature has important influence on magnetic properties and microstructure of magnetic materials. The results show that the grain size of Nd2Fe14B and α-Fe phase increases steadily with increasing extrusion temperature. Furthermore, optimal extrusion temperature of 1223 K occurs, at which the highest magnetic properties and relative density can be obtained.  相似文献   

11.
We report on the structural and magnetic properties of nanoparticles of MnxCo1−xFe2O4 (x=0.1, 0.5) ferrites produced by the glycothermal reaction. From the analysis of XRD spectra and TEM micrographs, particle sizes of the samples have been found to be about 8 nm (for x=0.1) and 13 nm (for x=0.5). The samples were characterized by DC magnetization in the temperature range 5-380 K and in magnetic fields of up to 40 kOe using a SQUID magnetometer. Mössbauer spectroscopy results show that the sample with higher Mn content has enhanced hyperfine fields after thermal annealing at 700 °C. There is a corresponding small reduction in hyperfine fields for the sample with lower Mn content. The variations of saturation magnetization, remnant magnetization and coercive fields as functions of temperature are also presented. Our results show evidence of superparamagnetic behaviour associated with the nanosized particles. Particle sizes appear to be critical in explaining the observed properties.  相似文献   

12.
The effectiveness of nanoscale Dy2Fe14B thin films on coercivity and energy product of melt-spun ribbons of Nd2Fe14B at high temperatures was investigated. It is hypothesized that the nanoscale Dy-thin film will act as an obstacle for the nucleation of reverse domains and also maximize the energy of domain walls and thereby improve the magnetic performance at high temperatures. Pulsed laser deposition (PLD) of amorphous Dy2Fe14B layers on Nd2Fe14B melt-spun ribbons was performed for a nominal thickness of 40 nm. The coated ribbons were then annealed in environmentally controlled quartz furnace at two different cycles (750 °C for 15 min and 900 °C for 2 h) to cause crystallization. Magnetic hysteresis tests conducted at 300 and 400 K revealed that there is small but consistent improvement in the magnetic properties of the coated ribbons annealed at 750 °C for 15 min. However, higher temperature annealing (900 °C for 2 h) drastically reduced the magnetic properties. The incomplete recrystallization of amorphous structure at 750 °C for 15 min and large grain growth and formation of non-magnetic phases at 900 °C for 2 h are believed to be responsible for not meeting the expected magnetic performance.  相似文献   

13.
Magnetic properties, phase evolution, and microstructure of melt spun Zr-substituted Sm(Co1−zZrz)xCy (x=5-9; y=0-0.15; z=0.03 and 0.06) ribbons quenched at the wheel speed of 40 m/s have been studied. The x-ray diffraction analysis showed that the main phases, found in Sm(Co0.97Zr0.03)x ribbons, were 1:5 phase for x=5-5.5; 1:5 and 1:7 phases for x=6; 1:7 phase for x=6.5-7.5; 1:7 and 2:17 phases for x=8; and only 2:17 phase for x=8.5-9, respectively. For Sm(Co0.97Zr0.03)x ribbons, the attractive magnetic properties of remanent magnetization (Br) of 5.5 kG, intrinsic coercivity (iHc) of 9.5 kOe, and energy product ((BH)max) of 7.0 MGOe were obtained for Sm(Co0.97Zr0.03)6.5 ribbons. Furthermore, a slight amount of C addition in Sm(Co0.97Zr0.03)x ribbons could not only effectively refine the grain size from 200 to 500 nm for C-free ribbon to 10-70 nm for C-added ribbons, but also bring extremely fine fcc-Co grains (2-10 nm), leading to the strengthened exchange coupling effect between the magnetic grains. As a result, magnetic properties were further improved. In this study, the optimal magnetic properties of Br=6.3 kG, iHc=10.5 kOe, and (BH)max=9.0 MGOe were achieved for Sm(Co0.97Zr0.03)7C0.1 nanocomposites.  相似文献   

14.
李安华  赖彬  王会杰  朱明刚  李卫 《物理学报》2011,60(2):27501-027501
研究了PrxFe82-x-yTiyCo10B4C4 (x=9—10.5;y=0, 2)纳米晶薄带的结构与磁性. 结果表明,所有薄带皆主要由2∶14∶1, 2∶17和α-(Fe, Co)三相组成. 对于y=0的合金,其内禀矫顽力随Pr含量x的增加而增加,剩磁随Pr含量x的增加而减小. 以Ti置换部分Fe (y=2),合金的磁性能得到显著提高,表现为:添加Ti后,合金的剩磁Br基本不降低,x=10.5时合金的Br值甚至有较明显的提高;同时添加Ti后,合金的内禀矫顽力及退磁曲线的方形度都明显改善. 当x=10.5,y=2时,合金薄带的磁性能达到最佳值为: Br=9.6 kGs(1 Gs=10-4 T),iHc =10.2 kOe(1 Oe=79.5775 A/m)和(BH)max=17.4 MGOe. 随着Pr含量的提高,合金中的硬磁相2 ∶14 ∶1的含量相对增加,内禀矫顽力提高;而Ti置换Fe抑制了软磁相α-(Fe, Co)在快淬和热处理过程中的优先长大,使合金中软磁相和硬磁相的晶粒尺寸及比例趋向最佳组合,交换耦合作用明显增强. 关键词: 纳米晶永磁材料 2Fe14(C')" href="#">Pr2Fe14(C B) Ti添加 交换耦合  相似文献   

15.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

16.
Single-phase M-type hexagonal ferrites Sr1−xLaxFe12O19 (0≤x≤1) were prepared by a ceramic route. The stability limits of the ferrite phases were determined with a combination of various microscopy techniques, electron-probe micro-analysis, powder X-ray diffraction and thermal analysis. SrFe12O19 (x=0) is stable up to 1420 °C, whereas LaFe12O19 (x=1) exists between 1360 and 1400 °C only. The lattice parameters of Sr1−xLaxFe12O19 exhibit a linear variation with x, i.e. a0 slightly increases and c0 decreases with x, leading to a decrease of the unit cell volume with x. The saturation magnetization at T=5 K decreases with increasing La concentration. Room temperature Mössbauer analysis shows that the Fe3+/Fe2+ valence change occurs in the 2a sites for the whole composition range.  相似文献   

17.
We report the effects of Al doping on the structure, magnetic properties, and magnetocaloric effect of antiperovskite compounds Ga1−xAlxCMn3 (0≤x≤0.15). Partial substitutions of Al for Ga enhance the Curie temperature (from 250 K for x=0.0 to 312 K for x=0.15) and the saturation magnetization. On increasing the doping level x, the maximum values of the magnetic entropy change (−ΔSM) decreases while the temperature span of ΔSM vs. T plot broadens. Furthermore, the relative cooling power (RCP) is also studied. For 20 kOe, the RCP value tends to saturate at a high doping level (for x=0.12, 119 J/kg at 296 K). However, at 45 kOe, the RCP value increases quickly with increasing x (for x=0.15, 293 J/kg at 312 K). Considering the relatively large RCP and inexpensive raw materials, Ga1−xAlxCMn3 may be alternative candidates for room-temperature magnetic refrigeration.  相似文献   

18.
The magneto-optical Kerr effect (MOKE) completed by other surface sensitive methods as integral low-energy and conversion electron Mössbauer spectroscopy, scanning and transmission electron microscopy and by X-ray diffraction have been used with the aim to trace the surface microstructure and magnetic properties of FeSiB amorphous ribbons prepared by planar flow casting. The general composition of studied samples is Fe80SixB20−x, where x=4, 6, 8, 10 at.%.It is shown that MOKE used for magnetization, hysteresis loop, and domain structure determination is highly beneficial in a detection of both surface crystallization and local ordering of atoms into magnetically different clusters of amorphous structure. Moreover, a combination of blue and red laser with different penetration depths yields unique results concerning the surface anisotropy and depth sensitivity. In the case of samples with 4, 6, and 8 at.% Si MOKE detects two magnetically different phases diverging in coercivity values Hc, however, not varying with the sample composition. These phases have been identified by Mössbauer measurements as FeSi and FeB clusters. Their relationship changes with Si concentration. On the other hand, a strong increase in the surface Hc found for the sample with 10 at.% Si has indicated a nanocrystallization. It was confirmed by electron microscopy, Mössbauer and X-ray diffraction results. The size of nanocrystals has varied between 200 nm and 500 nm.  相似文献   

19.
本文研究了用单辊急冷方法制备的非晶态合金Nd4Fe96-xBx的晶化,以及热处理对其硬磁性和相组成的影响,发现非晶态合金Nd4Fe96-xBx的晶化温度比相同B含量的非晶态合金Fe100-xBx高120—190K,X射线衍射和热磁测量表明,15≤x≤25的样品晶化相是由Nd2Fe14B(T 关键词:  相似文献   

20.
It is difficult to obtain the crystallographic alignment for stoichiometric Nd2Fe14B alloys by applying the melt-spun and subsequent hot-pressing and hot-deformation techniques. However, the enhanced alignment and magnetic properties of die-upset nano-crystal Nd2Fe14B magnets have been obtained by Nb addition in the present paper. The magnetic properties studies show that Nb addition leads to the remarkable increase of remanence Br and intrinsic coercivity Hci, which is due to the improvement of c-axis texture and refinement of microstructure. Microstructure studies using transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that Nb atoms are enriched at grain boundary and the NbFeB phase is observed with increasing Nb content. Since some Fe atoms in the Nd2Fe14B phase participate in the formation of NbFeB phase, the excessive Nd atoms may be enriched at grain boundary, which may improve the physical property of grain boundary and provide a mass transport pass for preferential growth of oriented Nd2Fe14B grains, thus leading to the enhanced alignment and magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号