首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
陈燕  陈群 《高分子学报》2003,(1):115-119
用固体高分辨核磁共振碳谱方法研究了不同组成比的聚 (3 羟基丁酸酯 ) 聚氧化乙烯共混物的结晶度、非晶区的相容性和分子运动能力 .结果表明聚 (3 羟基丁酸酯 )的结晶度几乎不随组成比变化 ,而聚氧化乙烯的结晶度则随其在共混物中含量的降低而显著降低 .聚氧化乙烯的加入使得聚 (3 羟基丁酸酯 )非晶区的分子运动能力有所增强 .共混物的非晶区表现出一定的相容性 ,相容程度与共混物的组成比有关  相似文献   

2.
本工作研究了多分散和单分散聚氧化乙烯-聚苯乙烯-聚氧化乙烯三嵌段共聚物(PEO-PS-PEO)的结晶行为,及这些试样按非晶型嵌段共聚物进行微相分离后再结晶的结晶特点.  相似文献   

3.
聚乳酸组织工程支架材料   总被引:24,自引:3,他引:21  
综述了生物活性因子固定化的聚乳酸-聚氨基酸衍生物共聚物和通过亲-疏水性设计的众多聚乳酸-聚氧化乙烯(PLA-PEO)共聚物的研究进展。展现了其在组织工程材料,药物控释体系和其他生物医用材料中的广泛应用前景。  相似文献   

4.
本工作将Leibler等近期关于含非晶两嵌段共聚物“稀固体溶液”的胶束理论推广并应用到含结晶三嵌段共聚物的“稀固体溶液”.对微量聚氧化乙烯-聚苯乙烯-聚氧化乙烯三嵌段共聚物/聚氧化乙烯均聚物共混体系的结晶行为进行了研究.结果表明,共聚物胶束在共混体系的结晶过程中可以起到成核剂的作用.这对改善结晶均聚物的性能具有一定的应用价值.  相似文献   

5.
 本工作将Leibler等近期关于含非晶两嵌段共聚物“稀固体溶液”的胶束理论推广并应用到含结晶三嵌段共聚物的“稀固体溶液”.对微量聚氧化乙烯-聚苯乙烯-聚氧化乙烯三嵌段共聚物/聚氧化乙烯均聚物共混体系的结晶行为进行了研究.结果表明,共聚物胶束在共混体系的结晶过程中可以起到成核剂的作用.这对改善结晶均聚物的性能具有一定的应用价值.  相似文献   

6.
组织工程用水凝胶材料   总被引:17,自引:0,他引:17  
综述了目前用于组织工程支架材料的水凝胶,包括胶原和明胶、透明质酸盐、海藻酸盐,琼脂糖和壳聚糖等天然水凝胶,聚丙烯酸及其衍生物、聚氧化乙烯及其衍生共聚物、聚乙烯醇、聚磷腈和合成多肽等合成水凝胶,并介绍了可注射性组织工程水凝胶。  相似文献   

7.
热力学的理论计算结果以及采用相差显微镜、透射电镜、小角X-射线散射和应力-应变行为等测试方法获得的结果均表明,聚氧化乙烯(PEO)和聚丙烯酰胺(PAM)共混体系相容性差,在高速搅拌下生成的PEO-PAM嵌段共聚物是有效的增容剂,可使PEO/PAM共混体系的微区尺度减小,不均匀程度降低,相区边界层厚度增大,宏观断裂强度增高。  相似文献   

8.
本工作对聚氧化乙烯-聚苯乙烯-聚氧化乙烯(PEO-PS-PEO)三嵌段共聚物与聚苯醚(PPO)均聚物共混物的相容性及结晶行为进行了研究。结果表明,共混体系的相容性与嵌段共聚物中苯乙烯段的含量有关,PS含量越高,PPO与共聚物PS段的相容性越好。共混体系的结晶行为也明显不同于一般均聚物共混体系。在DSC降温结晶过程中最多可出现三个结晶峰。  相似文献   

9.
两亲性聚肽嵌段共聚物具有良好的生物相容性、生物安全性和可生物降解性,其在选择性溶剂中自组装形成的胶束在药物控释载体方面有着良好的应用前景[1~4].Cho等研究了聚(L-谷氨酸-γ-苯甲酯)(PBLG)-聚氧化乙烯(PEO)嵌段共聚物(PBLG-b-PEO)在水中的自组装性能,发现PBLG-b-PEO在水  相似文献   

10.
 本工作对聚氧化乙烯-聚苯乙烯-聚氧化乙烯(PEO-PS-PEO)三嵌段共聚物与聚苯醚(PPO)均聚物共混物的相容性及结晶行为进行了研究。结果表明,共混体系的相容性与嵌段共聚物中苯乙烯段的含量有关,PS含量越高,PPO与共聚物PS段的相容性越好。共混体系的结晶行为也明显不同于一般均聚物共混体系。在DSC降温结晶过程中最多可出现三个结晶峰。  相似文献   

11.
采用耗散粒子动力学(Dissipative particle dynamics, DPD)模拟方法研究了三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO)的胶束化和凝胶化行为. 通过模拟得到了F127(EO99PO65EO99)水溶液的临界胶束浓度和临界凝胶浓度. 结果发现, 在298 K、 质量分数低于40%时, F127水溶液中形成的胶束形状均为球形. 此外,进一步研究了亲水嵌段长度对胶束结构及凝胶形成浓度的影响, 结果发现, 亲水嵌段越短, 越有利于长椭球状胶束的形成, 而临界凝胶浓度随着亲水嵌段PEO长度的增加而降低.  相似文献   

12.
Interaction of urea with pluronic block copolymers by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
Solution 1H NMR techniques were used to characterize the interaction of urea with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The urea was established to interact selectively with the PEO blocks of the block copolymer, and the interaction sites were found not to change with increasing temperature. Such interactions influence the self-assembly properties of the block copolymer in solution by increasing the hydration of the block copolymers and stabilizing the gauche conformation of the PPO chain. Therefore, urea increases the critical micellization temperature (CMT) values of PEO-PPO-PEO copolymers, and the effect of urea on the CMT is more pronounced for copolymers with higher PEO contents and lower for those with increased contents of PPO segments.  相似文献   

13.
Hierarchical mesostructures of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(ε-caprolactone) (PCL-PEO-PCL) triblock copolymers have been grown from evaporation-induced self-assembly directed by alkali metal ions. The self-assembly process began with a dilute homogeneous solution of the triblock copolymers in a mixture of tetrahydrofuran (THF) and water. THF preferentially evaporated under reduced pressure and induced the formation of amphiphilic polymer micelles. The spherical polymer micelles formed both in deionized water and NaOH aqueous solution. However, different mesostructures were discovered during the film depositing process for scanning electron microscopy observation. The polymer micelles were observed for the deposition sample in deionized water while sisal-like hierarchical mesostructures resulted from the film deposition of polymer micelles in NaOH aqueous solution. The sisal-like mesostructures and their formation process were observed through scanning electron microscopy, transmission electron microscopy, fluorescent microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Detailed study revealed that during evaporation-induced self-assembly of PCL-PEO-PCL amphiphilic triblock copolymer directed by alkali metal ions, the sodium ions and polymer micelles increasingly concentrated in NaOH aqueous solution and the solvent quality for the diblock progressively decreased, which resulted in the stronger coordination between alkali metal ions and PEO ligands in the block copolymer and PEO segment crystallization.  相似文献   

14.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

15.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

16.
In this work, we present a facile method for preparation of novel polyaniline(PANI)/titanate composite nanotubes by in situ chemical oxidative polymerization directed by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The block copolymer adsorbed onto the surface of the titanate nanotubes acts as a soft template. The obtained nanocomposite has a core-shell structure in which titanate nanotubes are encapsulated by uniform PANI layers. Their structure and morphology were characterized by various experimental techniques. A possible formation mechanism of composite nanotubes is also proposed in the paper.  相似文献   

17.
A novel biodegradable and thermosensitive hydrogel microparticle was prepared via suspension polymerization of a kind of block copolymer macromonomers. According to the molecular design, the macromonomer is composed of a thermosensitive triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) and two oligomers of biodegradable polyester such as oligo(lactic acid) or oligo(ε-caprolactone), and end-capped with acryloyl groups. Microgels were obtained by inverse suspension polymerization of the macromonomer aqueous droplets initiated by a redox initiator. Thermosensitivity and in vitro biodegradation of the resultant microgels were confirmed. The gel microparticles in an aqueous solution were swollen at low temperature and shrunken at high temperature (human body temperature). Degradation rate could be adjusted by controlling the composition and the degree of polymerization of oligoester. Thus, the microgels exhibit combinatory and tunable properties.  相似文献   

18.
The micropolarities of the reverse micelle (RM) interior of nonionic poly(ethylene oxide) surfactants of the alkyl ether type (poly(ethylene oxide)[4] lauryl ether (C12E4, Brij 30)), alkyl-aryl ethers (poly(ethylene oxide)[4] nonylphenyl ether (C9PhiE4), poly(ethylene oxide)[5] nonylphenyl ether (C9PhiE5), and poly(ethylene oxide)[5] octylphenyl ether (C8PhiE5)), and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronics P123, F127) were investigated as a function of the water content by applying the absorption probe technique, using 4-nitropyridine-N-oxide (NP) as a probe. The change in the micellar aggregate micropolarity in different solvents (cyclohexane, decane, n-butanol, and n-butyl acetate) at various water contents has been investigated. The research was focused on the determination of the effects of surfactant structure and solvent type on the hydration degrees of the PEO chains in the region at the core limit, where the NP probe was located. All results regarding the polarities in RM and PEO/water calibration mixtures have been expressed in terms of Kosower's Z values, using the linear dependence of E(NP) on Kosower's Z. The PPO/butanol mixtures have also been used for RM in butanol as a reference system. The data revealed that local polarity in RM is dependent on the surfactant type, block copolymer composition, solvent nature, and water content. At the same water content, the results clearly indicate a lower hydration degree of triblock copolymers, as compared to the surfactants of the alkyl ether and alkyl-aryl ether type, but for P123 and F127 Pluronics in n-butanol the hydration is higher owing to the behavior of butanol as cosurfactant and to its hydration.  相似文献   

19.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy. A mixed solvent containing 60 wt % tetrahydrofuran corresponds to the transition point, as verified by analysis of a poly(ethylethylene)-poly(ethylene oxide) diblock copolymer in the same solvent mixtures. Furthermore, cryogenic transmission electron microscopy suggests that, as the poly(ethylethylene) block transitions from the core to the corona, the micelle morphologies evolve from disks to oblate ellipsoid micelles (with some vesicles), with worms and spheres evident at intermediate compositions.  相似文献   

20.
聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物因其具有良好的生物相容性和蛋白抗性,近年来在生物医用材料中的应用越来越广泛.聚氧乙烯-聚氧丙烯-聚氧乙烯水溶液具有温度敏感的胶束化和热可逆凝胶化特点,被认为是一种具有许多优点的药物传输载体,药物与胶束的核心结合增加了药物的溶解性、代谢稳定性和体内循环时间.本文对聚氧乙烯-聚氧丙烯-聚氧乙烯在生物医用方面的研究进展进行了综述,并重点介绍了其在药物传输载体,组织工程等方面的研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号