首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonlinear dynamic responses of a laminated hybrid composite plate subjected to time-dependent pulses are investigated. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a clamped plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformation of plate obtained using the finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain and a MATLAB software code is written to solve nonlinear coupled equations by using the Newmark Method. The results of approximate-numerical analysis are obtained and compared with the finite element results. Transient loading conditions considered include blast, sine, rectangular, and triangular pulses. A parametric study is conducted considering the effects of peak pressure, aspect ratio, fiber orientation and thicknesses.  相似文献   

2.
应用Hamilton变分原理建立了平动状态下对边简支对边自由矩形薄板的非线性动力学方程,分别应用假设模态法和康特洛维奇法分析了板的前4阶近似振动频率、临界分岔值及板的前3阶后屈曲近似解,并比较了取不同阶数假设模态对分析结果的影响.分析表明整体平动可使柔性多体系统中的柔性构件产生动力刚化和动力软化效应,且软化效应还可使系统平衡位置发生分岔而失稳;在动力刚化和动力软化情况下,柔性构件模态出现的顺序均可能发生改变,此性质在柔性多体系统动力学简化建模特别是模态截断时应引起足够的重视.  相似文献   

3.
申志强  夏军  宋殿义  程盼 《力学学报》2018,50(5):1093-1103
近年来由各类新型复合材料或功能梯度材料构成的板结构在工程领域得到了广泛应用,其显著特点是材料性能沿板厚变化.为合理考虑横向剪切应变,许多学者基于Reddy高阶剪切变形理论,构建了不同的有限元单元对该类板结构进行分析,但其中满足$C^{1}$连续条件的单元相对较少.本文基于Reddy高阶剪切变形理论,采用求积元方法,建立了$C^{1}$连续的四边形板单元.利用该单元对均质材料、复合材料、功能梯度材料构成的等厚度矩形板、变厚度矩形板及等厚度斜板的线弹性弯曲和自由振动问题进行了计算分析,并与现有文献中的相应计算结果进行了对比.研究表明:基于高阶剪切变形理论的四边形求积元板单元具有较高的计算效率和良好的适应性,文中各类材料构成的等变厚度矩形板及等厚度斜板均只需1个单元即可得到理想的计算结果.对于等/变厚度矩形板,可仅使用9$\times$9个积分点,而对于等厚度斜板,随着斜角的增大,所需积分点的数目逐渐增多至15$\times $15.该四边形求积元板单元可进一步用于新型复合材料板的非线性分析.   相似文献   

4.
Dynamics of three-dimensional beams undergoing large overall motion   总被引:3,自引:0,他引:3  
In the previous linear formulation of flexible multibody system, the neglect of stiffening terms may cause significant error in case of high rotating speed. In this paper, a geometric nonlinear formulation of three-dimensional beams is proposed based on virtual power principle. Frequency results of a rotating spatial beam using the present nonlinear model are compared with those using the linear model without stiffening. An influence ratio, which is related to non-dimensional axial base acceleration and lateral angular velocity, is put forward to clarify the limit of the linear formulation. It is shown that the relative frequency error is closely related to the influence ratio. Finally, simulation of a flexible spatial manipulator is carried out to verify the effectiveness of the criterion.  相似文献   

5.
研究了初应力法的作大范围运动矩形板的建模理论。根据连续介质理论,考虑应变-位移中的非线性项,用一致质量有限元法对柔性板进行离散,基于Jourdain速度变分原理导出定轴转动下大范围运动为自由的柔性板刚-柔耦合动力学方程。从其刚柔耦合动力学方程出发,考虑在大范围运动已知情况下的结构动力学方程。通过引入准静态概念,把其结构动力学方程转化为准静态方程。对纵向和横向变形节点坐标进行坐标分离,解出与纵向变形相关的准静态方程,得到准静态时的纵向应力表达式,从而获得附加刚度项;并对此非惯性系下作大范围运动柔性板的结构动力学方程进行数值仿真,验证了采用初应力法柔性板的动力学建模方法来计算经历大范围运动的不规则柔性板的动力学响应是可行的,体现了初应力法对柔性板建模的优越性。  相似文献   

6.
Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.  相似文献   

7.
杜超凡  章定国 《力学学报》2015,47(5):839-847
将光滑节点插值法用于悬臂梁的静力学,并首次用于旋转柔性梁的频率分析. 采用梯度光滑技术,用线性插值形函数描述梁的位移场,求解4 阶微分方程. 在静力学分析中,将该方法所得梁中各点位移与假设模态法、有限元法及解析解的结果对比,可知该方法虽用简单的线性插值形函数描述梁的位移场,但精度却很高. 进一步研究表明,采用模态高于9 阶的假设模态法会使刚度阵条件数变差,导致结果发散. 在频率分析中,与有限元法、假设模态法和解析解对比,表明该方法一个重要特性:能提供固有频率的下界值,而有限元法和假设模态法只能提供固有频率的上界值,说明该方法结合有限元法在处理无解析解的问题时可以从上下界最大程度的逼近真实解,提高精度. 光滑节点插值法具有形函数结构简单、独立变量少且能提供固有频率下界值的特性,因此,具有较高的推广及应用价值.   相似文献   

8.
Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation (ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore, dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results, while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.  相似文献   

9.
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes (SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection, geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.  相似文献   

10.
The previous low-order approximate nonlinear formulations succeeded in capturing the stiffening terms, but failed in simulation of mechanical systems with large deformation due to the neglect of the high-order deformation terms. In this paper, a new hybrid-coordinate formulation is proposed, which is suitable for flexible multibody systems with large deformation. On the basis of exact strain–displacement relation, equations of motion for flexible multibody system are derived by using virtual work principle. A matrix separation method is put forward to improve the efficiency of the calculation. Agreement of the present results with those obtained by absolute nodal coordinate formulation (ANCF) verifies the correctness of the proposed formulation. Furthermore, the present results are compared with those obtained by use of the linear model and the low-order approximate nonlinear model to show the suitability of the proposed models. The project supported by the National Natural Science Foundation of China (10472066, 50475021).  相似文献   

11.
Nonlinear parametric vibration and stability is investigated for an axially accelerating rectangular thin plate subjected to parametric excitations resulting from the axial time-varying tension and axial time-varying speed in the magnetic field. Consid- ering geometric nonlinearity, based on the expressions of total kinetic energy, potential energy, and electromagnetic force, the nonlinear magneto-elastic vibration equations of axially moving rectangular thin plate are derived by using the Hamilton principle. Based on displacement mode hypothesis, by using the Galerkin method, the nonlinear para- metric oscillation equation of the axially moving rectangular thin plate with four simply supported edges in the transverse magnetic field is obtained. The nonlinear principal parametric resonance amplitude-frequency equation is further derived by means of the multiple-scale method. The stability of the steady-state solution is also discussed, and the critical condition of stability is determined. As numerical examples for an axially moving rectangular thin plate, the influences of the detuning parameter, axial speed, axial tension, and magnetic induction intensity on the principal parametric resonance behavior are investigated.  相似文献   

12.
The present paper deals with dynamic, coupled buckling of long, prismatic columns simply supported at the ends. This investigation concerns thin-walled structures of a square cross-section with or without intermediate stiffeners under in-plane pulse loading. The dynamic load of a rectangular shape has been assumed in the analysis. The structures are composed of rectangular plates interconnected along longitudinal edges. A plate model is adopted in the analysis. The material of the structure is isotropic. The problem has been investigated on the basis of the disturbance theory. The dynamic critical load factor DLF has been determined using the Budiansky and Hutchinson criterion. The results obtained with the analytical-numerical method (ANM), which employs the asymptotic perturbation theory, have been compared with the finite element method (FEM).  相似文献   

13.
将无网格径向基点插值法(radial point interpolation method,RPIM)用于中心刚体?旋转柔性板的动力学分析.基于浮动坐标系方法和一阶剪切变形理论即Mindlin板理论,考虑剪切变形的影响,并计入板面内变形的非线性耦合变形项,采用径向基点插值法描述板的变形场,保留动能中有关非线性耦合变形项...  相似文献   

14.
非线性粘弹性板的失稳条件   总被引:1,自引:0,他引:1  
陈立群  程昌钧 《力学季刊》2001,22(2):247-251
研究了给定面内周期激励作用下简支各向同性均匀粘弹性板平衡失稀问题,板的材料特性由Leaderman非线性本构关系描述,将板的动力学方程进行(Galerkin截断得到简化数学模型为弱非线性系统,采用平均法得到系统的平均化方程,对平均化方程进行稳定性分析得到了板平衡失稳的解析条件,对原系统用数值仿真进行研究,数值结果表明,随着激励幅值的增加或粘弹性材料系数的减少,系统平衡点推失稳,激励幅值和粘弹性材料系数的临界值均与解析结果接近。  相似文献   

15.
The finite-element-displacement-perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was employed to calculate the stress distributions and the stiffness of the bellows. Firstly, by applying the first-order perturbation solution (the linear solution)of the FEDPM to the bellows, the obtained results were compared with those of the general solution and the initial parameter integration solution proposed by the present authors earlier, as well as of the experiments and the FEA by others.It is shown that the FEDPM is with good precision and reliability, and as it was pointed out in (Ⅰ) the abrupt changes of the meridian curvature of bellows would not affect the use of the usual straight element. Then the nonlinear behaviors of the bellows were discussed. As expected, the nonlinear effects mainly come from the bellows ring plate,and the wider the ring plate is, the stronger the nonlinear effects are. Contrarily, the vanishing of the ring plate, like the C-shaped bellows, the nonlinear effects almost vanish. In addition, when the pure bending moments act on the bellows, each convolution has the same stress distributions calculated by the linear solution and other linear theories, but by the present nonlinear solution they vary with respect to the convolutions of the bellows. Yet for most bellows, the linear solutions are valid in practice.  相似文献   

16.
The nonlinear dynamic control equation of a flexible multi-body system with definite moving attitude is discussed.The motion of the aircraft in space is regarded as known and the influence of the flexible structural members in the aircraft on the motion and attitude of the aircraft is analyzed.By means of a hypothetical mode,the defor- mation of flexible members is regarded as composed of the line element vibration in the axial direction of rectangular coordinates in space.According to Kane’s method in dy- namics,a dynamic equation is established,which contains the structural stiffness matrix that represents the elastic deformation and the geometric stiffness matrix that represents the nonlinear deformation of the deformed body.Through simplification the dynamic equation of the influence of the planar flexible body with a windsurfboard structure on the spacecraft motion is obtained.The numerical solution for this kind of equation can be realized by a computer.  相似文献   

17.
Simulation of fabric drape using a thin plate element with finite rotation   总被引:1,自引:0,他引:1  
The draping behavior of fabric is simulated by using four node quadrilateral thin plate elements with finite rotation. The finite element formulation is based on the total Lagrangian approach. An exact representation of finite rotation is introduced. The strain energy function accounting for the material symmetry is obtained by the tensor representation theory. To avoid shear locking, the assumed strain technique for transverse shear is adopted. The conjugate gradient method with a proposed line search algorithm is employed to minimize energy and reach the final shape of fabric. The draping behavior of a rectangular piece of fabric over a rectangular table is simulated.  相似文献   

18.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

19.
In the present paper, two-dimensional coupled free vibrations of a fluid-filled rectangular container with a sagged bottom membrane are investigated. This system consists of two rigid walls and a membrane anchored along two rigid vertical walls. It is filled with incompressible and inviscid fluid. The membrane material is assumed to act like an inextensible material with no bending resistance. First, the nonlinear equilibrium equation is solved and the equilibrium shape of the membrane is obtained using an analytical formulation neglecting the membrane weight. The small vibrations about the equilibrium configuration are then investigated. Along the contact surface between the bottom membrane and the fluid, the compatibility requirement is applied for the fluid–structure interactions and the finite element method is used to calculate the natural frequencies and mode shapes of the fluid–membrane system. The vibration analysis of the coupled system is accomplished by using the displacement finite element for the membrane and the pressure fluid-finite element for the fluid domain. The variations of natural frequencies with the pressure head, the membrane length, the membrane weight and the distance between two rigid walls are examined. Moreover, the mode shapes of system are investigated.  相似文献   

20.
基于含椭圆核有限大各向异性板弹性问题的复变函数级数解,应用杂交变分原理建立了一种与常规有限元相协调的含任意椭圆核各向异性板杂交应力有限元.单元内的应力场和位移场采用满足平衡方程、几何方程与物理方程的复变函数级数解,假设的复变函数级数解精确满足椭圆核边界处的位移协调条件和应力连续条件,单元外边界上的位移场按常规有限元位移场假设,单元内椭圆核的长轴可以与材料主轴不重合.单元刚度矩阵采用Gauss积分求得,并给出了建立刚度矩阵的主要公式和推倒过程.数值计算结果表明该单元具有计算精度高、计算工作量小等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号