首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细长体倾斜出水的实验研究   总被引:1,自引:0,他引:1  
为了获得细长体倾斜出水空泡生成、发展及溃灭过程,基于高速摄像系统对细长体小倾角倾斜出水过程进行了实验研究。通过对比细长体垂直及倾斜带泡出水过程,分析了倾斜出水过程中体现出的新特征及其影响因素。在此基础上,对不同初始倾角及细长体头型对出水轨迹及姿态的影响规律进行了实验研究:细长体姿态及轨迹变化与其初始倾角并非线性相关,与肩空泡的闭合位置密切相关;细长体头型变钝,其水下运动过程稳定性增加。  相似文献   

2.
The present study is devoted to numerical analysis of natural convective heat transfer and fluid flow of alumina-water nanofluid in an inclined wavy-walled cavity under the effect of non-uniform heating. A single-phase nanofluid model with experimental correlations for the nanofluid viscosity and thermal conductivity has been included in the mathematical model. The considered governing equations formulated in dimensionless stream function, vorticity, and temperature have been solved by the finite difference method. The cavity inclination angle and irregular walls (wavy and undulation numbers) are very good control parameters for the heat transfer and fluid flow. Nowadays, optimal parameters are necessary for the heat transfer enhancement in different practical applications. The effects of the involved parameters on the streamlines and isotherms as well as on the average Nusselt number and nanofluid flow rate have been analyzed. It has been found that the heat transfer rate and fluid flow rate are non-monotonic functions of the cavity inclination angle and undulation number.  相似文献   

3.
Steady two-dimensional natural convection in fluid filled cavities is numerically investigated. The channel is heated from below and cooled from the top with insulated side walls and the inclination angle is varied. The field equations for a Newtonian Boussinesq fluid are solved numerically for three cavity height based Rayleigh numbers, Ra = 104, 105 and 106, and several aspect ratios. The calculations are in excellent agreement with previously published benchmark results. The effect of the inclination of the cavity to the horizontal with the angle varying from 0° to 180° and the effect of the startup conditions on the flow pattern, temperature distribution and the heat transfer rates have been investigated. Flow admits different configurations at different angles as the angle of inclination is increased depending on the initial conditions. Regardless of the initial conditions Nusselt number Nu exhibits discontinuities triggered by gradual transition from multiple cell to a single cell configuration. The critical angle of inclination at which the discontinuity occurs is strongly influenced by the assumed startup field. The hysteresis effect previously reported is not always present when the calculations are reversed from 90° to 0°. A comprehensive study of the flow structure, the Nu variation with varying angle of inclination, the effect of the initial conditions and the hysteresis effect are presented.  相似文献   

4.
The characteristics of the flow and heat transfer in two- and three-dimensional open cavities on plane and cylindrical surfaces in a supersonic stream in the presence of a turbulent boundary layer have been investigated experimentally. The effects of the Mach number, boundary layer thickness, the shape of the cavity, and its angle of inclination to the free-stream direction on the flow parameters in the mixing layer above the cavity and the heat flux and pressure distribution on the surface of the cavity and its bottom are descirbed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 74–80, July–August, 1998.  相似文献   

5.
The bifurcation regimes of free convection in closed cavities with heating from below have been investigated numerically by many authors [1]. In the situations considered the equilibrium solution conditions were disturbed by only one factor, e.g. the inclination of the cavity to the vertical, the motion of one of the boundaries, a change in the equilibrium temperature distribution, etc. In this paper, the simultaneous influence of two factors that disturb the fluid equilibrium conditions, namely thermal radiation and a slight inclination of the cavity relative to the vertical, are investigated. It is shown that, for the simultaneous action of two destabilizing factors, a near-equilibrium solution is possible. Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 42–47, January–February, 2000. The work received financial support from the Russian Foundation for Basic Research (project No. 96-01-01737).  相似文献   

6.
Convection experiments in an inclined narrow cavity   总被引:1,自引:0,他引:1  
The liquid flow behaviour in a small vertical gap with a heated and a cooled sidewall was studied experimentally in a former work as far as heat and mass transfer are concerned [Heiland et al. in Heat Mass Transf 43:863–870, 2007]. Following this, the study of thermal convection in a narrow cavity with variable inclination angle has been performed with liquid crystal techniques. Velocity and temperature fields of the flow have been measured. The results show that the strongest convection intensity arises in a vertical cavity.  相似文献   

7.
The process of vortex formation in a cavity with inclined walls, which has a moderate aspect ratio, is experimentally studied, and the distribution of pressure coefficients is measured. The angle of inclination of the side walls ϕ is varied from 30 to 90°. It is found that the flow in the cavity becomes unstable in the range of inclination angles ϕ = 60–70°. Flow reconstruction occurs, which substantially alters the surface-temperature and static-pressure distributions. Large changes in these characteristics and their nonuniform distributions for these angles are observed across the cavity on its frontal wall and on the bottom. For small angles (ϕ = 30 and 45°), the pressure on the rear wall drastically increases, which leads to a small increase in pressure averaged over the entire cavity surface. __________ Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 68–76, September–October, 2006.  相似文献   

8.
宁利中  张珂  宁碧波  吴昊  田伟利 《应用力学学报》2020,(2):737-742,I0019,I0020
为了研究矩形倾斜腔体中普朗特数Pr=0.72的流体对流斑图和分区,本文基于流体力学方程组进行了数值模拟。在相对瑞利数r=6.0的情况下,观察了倾角θ=10°和θ=60°时对流斑图随着时间的发展,发现系统存在单圈型对流和多圈型对流两种斑图。流线随着倾角的变化说明:随着倾角增加,对流圈数逐渐减少,对流波长逐渐增加,对流波数减小;然后,随着对流圈数显著地减少,系统由多圈型对流过渡到单圈型对流。根据模拟计算结果,给出了多圈型对流过渡到单圈型对流的临界倾角θc随着相对瑞利数r变化的关系曲线。对流在θ-r平面上分为两个区域:θ<θc时系统是单圈型对流,θ>θc时系统是多圈型对流。对流最大振幅A和努塞尔数Nu随着倾角θ的变化曲线被临界倾角θc分成两段,它们有不同的变化规律。因此,临界倾角也可以由对流最大振幅A或努塞尔数Nu的变化曲线来确定。  相似文献   

9.
A numerical study has been carried out on inclined open shallow cavities, which are formed by a wall and horizontal fins. Constant heat flux is applied on the surface of the wall inside the cavity while its other surface was kept isothermal. The wall and the fins are conductive. Conjugate heat transfer by natural convection and conduction is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 106 to 1012, conductivity ratio from 1 to 60, open cavity aspect ratio from 1 to 0.125, dimensionless end wall thickness from 0.05 to 0.20, horizontal walls from 0.01 to 0.15 and inclination of the end wall from 90° to 45°. It is found that the volume flow rate and Nusselt number are a decreasing function of the cavity aspect ratio, horizontal fin thickness and conductivity ratio. They are an increasing function of end wall thickness and inclination angle, except in the latter case optima exist at high Rayleigh numbers.  相似文献   

10.
Numerical analysis of solar dish modified cavity receiver with Cone, CPC and Trumpet reflectors is presented. Three-dimensional modeling is carried out to estimate the convective and radiative heat loss from the receiver for different angles of inclination and operating temperatures. Incorporating reflectors in the modified cavity receiver for second stage concentration, the natural convection heat losses are reduced by 29.23, 19.81 and 19.16%, respectively. The receiver with the trumpet reflector has shown better performance as compared to other configurations.  相似文献   

11.
Laminar double-diffusive natural convective flow of a binary fluid mixture in inclined square and rectangular cavities filled with a uniform porous medium in the presence of temperature-difference dependent heat generation (source) or absorption (sink) is considered. Transverse gradients of heat and mass are applied on two opposing walls of the cavity while the other two walls are kept adiabatic and impermeable to mass transfer. The problem is put in terms of the stream function-vorticity formulation. A numerical solution based on the finite-difference methodology is obtained for relatively high Lewis numbers. Representative results illustrating the effects of the inclination angle of the cavity, buoyancy ratio, Darcy number, heat generation or absorption coefficient and the cavity aspect ratio on the contour maps of the streamline, temperature, and concentration as well as the profiles of velocity, temperature and concentration at mid-section of the cavity are reported. In addition, numerical results for the average Nusselt and Sherwood numbers are presented for various parametric conditions and discussed.  相似文献   

12.
Natural convective flow and heat transfer in an inclined quadrantal cavity is studied experimentally and numerically. The particle tracing method is used to visualize the fluid motion in the enclosure. Numerical solutions are obtained via a commercial CFD package, Fluent. The working fluid is distilled water. The effects of the inclination angle, ? and the Rayleigh number, Ra on fluid flow and heat transfer are investigated for the range of angle of inclination between 0° ? ? ? 360°, and Ra from 105 to 107. It is disclosed that heat transfer changes dramatically according to the inclination angle which affects convection currents inside, i.e. flow physics inside. A fairly good agreement is observed between the experimental and numerical results.  相似文献   

13.
Convective heat transfer in a transverse cavity with a small aspect ratio, angle of wall inclination ϕ = 30–90°, and heated bottom, frontal, and rear walls of the cavity is studied experimentally. Temperature distributions are measured in longitudinal and transverse sections on three walls; temperature fields are measured over the entire heated surface. Local and mean heat-transfer coefficients are calculated. The highest intensification of heat transfer is found to occur on the rear wall for low values of ϕ Reconstruction of the one-cell structure to the two-cell structure of the primary vortex in the cavity leads to a drastic decrease in heat transfer over the cavity span from the end faces toward the center in the case with ϕ = 60 and 70°. A certain increase in the mean heat-transfer coefficient averaged over the entire heated surface is noted for ϕ = 60°. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 23–29, July–August, 2007.  相似文献   

14.
This paper is concerned with the double diffusive convection due to the melting of an ice plate into a calcium chloride aqueous solution inside a rectangular cavity. It is mainly considered the effect of the cavity inclination on the melting rate and the mean melting Nusselt- and Sherwood-numbers, experimentally as well as numerically. The ice plate melts spontaneously with decreasing temperature at the melting front even if initially there does not exist a temperature difference between the ice and the liquid. The concentration- and temperature-gradients near the melting front induce double diffusive convection in the liquid, which will affect the melting rate. Experiments reveal that the mean melting mass increases monotonically with increasing cavity inclination. The numerical analysis based on the laminar assumption predicts well the melting mass in the range of =0–90°, however, under-predicts the melting mass in the range of =90–180° as compared with the experimental results.  相似文献   

15.
为研究截锥体头型弹丸在低速斜入水条件下,头部直径大小对入水空泡及弹道特性的影响,基于高速摄像方法,开展不同截锥体头型弹丸低速倾斜入水对比实验,得到了截锥体头弹丸头部直径大小对入水空泡、运动速度、俯仰角的影响规律。实验结果表明:截锥体头弹丸头部直径越大,尾部越早与空泡下壁面发生碰撞;头部直径大小对空泡深闭合时间几乎没有影响;弹丸空泡随头部直径增大而增大;头部直径过大或者过小均不利于入水稳定性;弹丸速度低于临界值时呈上升趋势,高于临界值时将呈现下降趋势。  相似文献   

16.
This paper reports on the results of a numerical study on the equilibrium state of the convection of water in the presence of ice in an inclined rectangular cavity filled with a porous medium. One side of the cavity is maintained at a temperature higher than the fusion temperature while the opposite side is cooled to a temperature lower than the fusion temperature. The two remaining sides are insulated. Results are analysed in terms of the density inversion parameter, the tilt angle, and the cooling temperature. It appears that the phenomenon of density inversion plays an important role in the equilibrium of an ice-water system when the heating temperature is below 20°. In a vertical cavity, the density inversion causes the formation of two counterrotating vortices leading to a water volume which is wider at the bottom than at the top. When the cavity is inclined, there exist two branches of solutions which exhibit the bottom heating and the side heating characteristics, respectively (the Bénard and side heating branches). Due to the inversion of density, the solution on the Bénard branch may fail to converge to a steady state at small tilt angles and exhibits an oscillating behavior. On the side heating branch, a maximum heat transfer rate is obtained at a tilt angle of about 70° but the water volume was found to depend very weakly on the inclination of the cavity. Under the effect of subcooling, the interplay between conduction in the solid phase and convection in the liquid leads to an equilibrium ice-water interface which is most distorted at some intermediate cooling temperature.  相似文献   

17.
A study is made of the influence of an inclination on the distribution of concentrations produced by thermal diffusion in a cavity of rectangular section. It is shown that even a very weak convective motion produced in the cavity in the case of heating from above leads to significant perturbations of the concentration field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 176–179, July–August, 1979.We thank G. Z. Gershuni, Yu. K. Bratukhin, and V. I. Chernatynskii for discussing the results and for helpful comments.  相似文献   

18.
The Darcy flow model with the Boussinesq approximation is used to investigate numerically the natural convection inside an inclined wavy cavity filled with a porous medium. Finite Element Method is used to discretize the governing differential equations with non-staggered variable arrangement. Results are presented for and , where ϕ, Ra, A and λ correspond to the cavity inclination angle, Rayleigh number, aspect ratio and surface waviness parameter, respectively. Stream and isotherm lines representing the corresponding flow and thermal fields, and local and average Nusselt numbers distribution expressing the rate of heat transfer are determined and shown on graphs and tables. A good agreement is observed between the present results and those known from the open literature. The flow and thermal structures found to be highly dependent on surface waviness for inclination angles less than 45°, especially for high Rayleigh numbers.  相似文献   

19.
开放空腔壳体倾斜入水运动特性试验研究   总被引:5,自引:4,他引:1  
基于高速摄像试验方法,研究了开放空腔壳体的倾斜入水运动特性,重点分析了开放空腔结构引起的空泡流动特征和壳体运动规律. 通过试验数据分析了开放空腔内气体运动将引起独特的空泡流动和阶段性的运动规律,探讨了初始入水速度、入水姿态对入水弹道和空泡形态等运动特征的影响. 结果表明:开放空腔壳体入水空泡出现阶段波动演化现象,并先后经历两次闭合;入水空泡演化改变流体动力分布,直接影响壳体运动方式,进而改变水下弹道特征;空腔内部形成相对独立流场环境和开放端周期性流动,在重力作用下液体对空腔内下侧壁面作用力较大,加剧壳体偏转,从而改变入水运动过程的稳定性;随着入水速度的增大,空泡波动特征逐渐明显,闭合时间延迟,非对称深闭合引起的横向位移减小,但偏转角度与入水速度无关;随着初始姿态倾角减小,空泡波动程度减弱、闭合时间延迟,偏转角速度增大,闭合引起的横向位移增大.   相似文献   

20.
空腔和裂纹缺陷通常共存于深部地下岩体中,它们共同影响着岩体的结构安全性与稳定性。为了探究动力扰动载荷下圆形空腔对裂隙岩体内裂纹扩展行为的影响规律,提出了不同圆孔倾角的直裂纹空腔圆弧开口试件(circular opening specimen with straight crack cavity, COSSCC),利用自制大型落锤冲击实验装置进行动态加载实验,同时采用裂纹扩展计系统测试了裂纹的动态起裂时刻与裂纹扩展速度等各种断裂力学参数,随后采用有限差分软件Autodyn进行裂纹扩展路径与圆孔周围应力场的数值分析,并采用有限元软件Abaqus计算裂纹的动态起裂韧度与裂纹扩展过程中的动态扩展韧度。结果表明:(1)当圆孔倾角θ小于10°时,裂纹扩展路径会偏折并穿过圆孔表面;当圆孔倾角θ为20°与30°时,裂纹扩展路径向圆孔方向发生偏折但不会穿过圆孔,圆孔具有明显的裂纹扩展引导作用; 当圆孔倾角θ为40°与50°时,裂纹扩展路径不会发生偏折,圆孔引导作用明显减弱。(2)当裂纹扩展路径达到圆孔空腔附近时,裂纹尖端的拉伸应力区与圆孔边缘的拉伸应力区发生重合,此时裂纹扩展速度显著增大,裂纹动态断裂韧度显著减小。(3)裂纹的偏折方向与裂纹尖端最大周向应力的方向基本一致。(4)裂纹动态断裂韧度始终小于裂纹起裂韧度,且裂纹动态断裂韧度与裂纹动态扩展速度呈负相关关系。裂纹动态扩展速度越大,裂纹动态断裂韧度越小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号