首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An experimental investigation has been carried out to study the heat transfer characteristics during evaporation of R-134a inside a single helical microfin tube. The microfin tube has been provided with different tube inclination angles of the direction of fluid flow from horizontal, α. The experiments were performed for seven different tube inclinations, α, in a range of −90° to +90° and four mass velocities of 53, 80, 107 and 136 kg/m2 s for each tube inclination angle during evaporation of R-134a. The results demonstrate that the tube inclination angle, α, affects the boiling heat-transfer coefficient in a significant manner. For all refrigerant mass velocities, the best performing tube is that having inclination angle of α = +90°. The effect of tube inclination angle, α, on heat-transfer coefficient, h, is more prominent at low vapor quality and mass velocity. An empirical correlation has also been developed to predict the heat-transfer coefficient during flow boiling inside a microfin tube with different tube inclinations.  相似文献   

2.
Effects of inclination angle on natural convection heat transfer and fluid flow in a two-dimensional enclosure filled with Cu-nanofluid has been analyzed numerically. The performance of nanofluids is tested inside an enclosure by taking into account the solid particle dispersion. The angle of inclination is used as a control parameter for flow and heat transfer. It was varied from  = 0° to  = 120°. The governing equations are solved with finite-volume technique for the range of Rayleigh numbers as 103  Ra  105. It is found that the effect of nanoparticles concentration on Nusselt number is more pronounced at low volume fraction than at high volume fraction. Inclination angle can be a control parameter for nanofluid filled enclosure. Percentage of heat transfer enhancement using nanoparticles decreases for higher Rayleigh numbers.  相似文献   

3.
An experimental investigation of turbulent heat transfer in vertical upward and downward supercritical CO2 flow was conducted in a circular tube with an inner diameter of 4.5 mm. The experiments were performed for bulk fluid temperatures from 29 to 115 °C, pressures from 74.6 to 102.6 bar, local wall heat fluxes from 38 to 234 kW/m2, and mass fluxes from 208 to 874 kg/m2 s. At a moderate wall heat flux and low mass flux, the wall temperature had a noticeable peak value for vertical upward flow, but increased monotonically along the flow direction without a peak value for downward flow. The ratios of the experimental Nusselt number to the value obtained from a reference correlation were compared with Bo* and q+ distributions to observe the buoyancy and flow-acceleration effects on heat transfer. In the experimental range of this study, the flow acceleration predominantly affected the heat-transfer phenomena. Based on an analysis of the shear-stress distribution in the turbulent boundary layer and the significant variation of the specific heat across the turbulent boundary layer, a new heat-transfer correlation for vertical upward and downward flow of supercritical pressurized fluid was developed; this correlation agreed with various experimental datasets within ±30%.  相似文献   

4.
Laminar natural convection heat transfer in inclined fluid layers divided by a partition with finite thickness and conductivity is studied analytically and numerically. The governing equations for the fluid layers are solved analytically in the limit of a thin layered system with constant flux boundary conditions. The study covers of the range of Ra from 103 to 107, from 0° to 180° and the thermal conductivity ratio of partition to fluid ratioK from 10–2 to 106. The Prandtl number was 0.72 (for air). Results are obtained in terms of an overall Nusselt number as a function of Rayleigh number, angle of inclination of the system, mid layer thickness, and mid layer thermal conductivity. The critical Rayleigh number for the onset of convection in a bottom-heated horizontal system is predicted. The results are compared with the numerical results obtained by solving the complete system of governing equations, using SIMPLER method, as well as with the limiting cases in the literature.  相似文献   

5.
This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ?≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.  相似文献   

6.
A numerical and experimental study has been made on the flow and heat transfer in inclined air-filled cavities with aspect ratios 1–18 at Ra numbers from 2·104–5·105 and angles of inclination from 40 to 90°. Core stratification influences the flow. Due to this there arises a torque with two components depending on angle of inclination. On basis of the two torques the computed effects on flow and temperature fields can be explained. For the heat transfer a scaling law could be derived. Experimental data validate the numerical studies.  相似文献   

7.
Experiments have been performed to study the heat transfer process of swirling flow issued into a heated convergent pipe with a convergent angle of 5° with respect to the pipe axis. A flat vane swirler situated at the entrance of the pipe is used to generate the swirling flow. During the experiments, the Reynolds number ranges from 7970 to 47,820, and the swirl number from 0 to 1.2. It is found that the convergence of the pipe can accelerate the flow which has an effect to suppress the turbulence generated in the flow and reduce the heat transfer. However, in the region of weak swirl (= 0-0.65), the Nusselt numbers increase with increasing swirl numbers until = 0.65, where turbulence intensity is expected to be large enough and not suppressible. In the region of strong swirl (> 0.65), where recirculation flow is expected to be generated in the core of the swirling flow, the heat transfer characteristic can be altered significantly. At very high swirl (? 1.0), the accelerated flow in the circumferential direction is expected to be dominant, which leads to suppress the turbulence and reduce the heat transfer. The Nusselt number is found proportional to the swirl number. Correlations of the Nusselt numbers in terms of the swirl number, the Reynolds number and the dimensionless distance are attempted and are very successful in both the weak and the strong swirl regions.  相似文献   

8.
In this paper, the effects of a magnetic field on natural convection flow in filled long enclosures with Cu/water nanofluid have been analyzed by lattice Boltzmann method. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103–105, the volumetric fraction of nanoparticles between 0 and 6 %, the aspect ratio of the enclosure between A = 0.5 and 2. The Hartmann number has been varied from Ha = 0 to 90 with interval 30 while the magnetic field is considered at inclination angles of θ = 0°, 30°, 60° and 90°. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and the aspect ratios. Heat transfer decreases with the growth of the aspect ratio but this growth causes the effect of the nanoparticles to increase. The magnetic field augments the effect of the nanoparticles at high Rayleigh numbers (Ra = 105). The effect of the nanoparticles rises for high Hartmann numbers when the aspect ratio increases. The rise in the magnetic field inclination improves heat transfer at aspect ratio of A = 0.5.  相似文献   

9.
A numerical study has been carried out on inclined open shallow cavities, which are formed by a wall and horizontal fins. Constant heat flux is applied on the surface of the wall inside the cavity while its other surface was kept isothermal. The wall and the fins are conductive. Conjugate heat transfer by natural convection and conduction is studied by numerically solving equations of mass, momentum and energy. Streamlines and isotherms are produced, heat and mass transfer is calculated. A parametric study is carried out using following parameters: Rayleigh number from 106 to 1012, conductivity ratio from 1 to 60, open cavity aspect ratio from 1 to 0.125, dimensionless end wall thickness from 0.05 to 0.20, horizontal walls from 0.01 to 0.15 and inclination of the end wall from 90° to 45°. It is found that the volume flow rate and Nusselt number are a decreasing function of the cavity aspect ratio, horizontal fin thickness and conductivity ratio. They are an increasing function of end wall thickness and inclination angle, except in the latter case optima exist at high Rayleigh numbers.  相似文献   

10.
Steady two-dimensional natural convection in fluid filled cavities is numerically investigated. The channel is heated from below and cooled from the top with insulated side walls and the inclination angle is varied. The field equations for a Newtonian Boussinesq fluid are solved numerically for three cavity height based Rayleigh numbers, Ra = 104, 105 and 106, and several aspect ratios. The calculations are in excellent agreement with previously published benchmark results. The effect of the inclination of the cavity to the horizontal with the angle varying from 0° to 180° and the effect of the startup conditions on the flow pattern, temperature distribution and the heat transfer rates have been investigated. Flow admits different configurations at different angles as the angle of inclination is increased depending on the initial conditions. Regardless of the initial conditions Nusselt number Nu exhibits discontinuities triggered by gradual transition from multiple cell to a single cell configuration. The critical angle of inclination at which the discontinuity occurs is strongly influenced by the assumed startup field. The hysteresis effect previously reported is not always present when the calculations are reversed from 90° to 0°. A comprehensive study of the flow structure, the Nu variation with varying angle of inclination, the effect of the initial conditions and the hysteresis effect are presented.  相似文献   

11.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

12.
This investigation is aimed at studying the heat transfer characteristics and pressure drop for turbulent airflow in a sudden expansion pipe equipped with propeller type swirl generator or spiral spring with several pitch ratios. The investigation is performed for the Reynolds number ranging from 7500 to 18,500 under a uniform heat flux condition. The experiments are also undertaken for three locations for the propeller fan (N = 15 blades and blade angle of 65°) and three pitch ratios for the spiral spring (P/D = 10, 15 and 20). The influences of using the propeller rotating freely and inserted spiral spring on heat transfer enhancement and pressure drop are reported. In the experiments, the swirl generator and spiral spring are used to create a swirl in the tube flow. Mean and relative mean Nusselt numbers are determined and compared with those obtained from other similar cases. The experimental results indicate that the tube with the propeller inserts provides considerable improvement of the heat transfer rate over the plain tube around 1.69 times for X/H = 5. While for the tube with the spiral spring inserts, an improvement of the heat transfer rate over the plain tube around 1.37 times for P/d = 20. Thus, because of strong swirl or rotating flow, the propeller location and the spiral spring pitch become influential on the heat transfer enhancement. The increase in pressure drop using the propeller is found to be three times and for spiral spring 1.5 times over the plain tube. Correlations for mean Nusselt number, fan location and spiral spring pitch are provided.  相似文献   

13.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

14.
The creeping motion of a three-dimensional deformable drop or bubble in the vicinity of an inclined wall is investigated by dynamical simulations using a boundary-integral method. We examine the transient and steady velocities, shapes, and positions of a freely-suspended, non-wetting drop moving due to gravity as a function of the drop-to-medium viscosity ratio, λ, the wall inclination angle from horizontal, θ, and Bond number, B, the latter which gives the relative magnitude of the buoyancy to capillary forces. For fixed λ and θ, drops and bubbles show increasingly pronounced deformation in steady motion with increasing Bond number, and a continued elongation and the possible onset of breakup are observed for sufficiently large Bond numbers. Unexpectedly, viscous drops maintain smaller separations and deform more than bubbles in steady motion at fixed Bond number over a large range of inclination angles. The steady velocities of drops (made dimensionless by the settling velocity of an isolated spherical drop) increase with increasing Bond number for intermediate-to-large inclination angles (i.e. 45° ? θ ? 75°). However, the steady drop velocity is not always an increasing function of Bond number for viscous drops at smaller inclination angles.  相似文献   

15.
Flow boiling heat transfer coefficients of CO2 have been measured in a single microchannel. Experiments were carried out in a horizontal stainless steel tube of 0.529 mm inner diameter, for three temperatures (−10, −5 and 0 °C), with the mass flux ranging from 200 to 1200 kg/m2 s and the heat flux varying from 10 to 30 kW/m2. The investigation covered qualities from zero to the dryout inception, i.e. pre-dryout conditions. Compared to larger microchannels and positive temperatures, a higher contribution of convective boiling was found, with a larger heat transfer coefficient than for pure nucleate boiling. Mainly two heat transfer regimes were found, depending on the boiling number (Bo). For Bo > 1.1 × 10−4, the heat transfer coefficient was highly dependent on the heat flux and moderately influenced by the quality and the mass flux. For Bo < 1.1 × 10−4, the heat transfer coefficient was hardly affected by the heat flux but strongly influenced by the quality and the mass flux. In addition, dryout results were reported. The effect of the mass flux on the dryout inception quality was found to be highly dependent on the heat flux and the saturation temperature.  相似文献   

16.
This paper presents the results of an experimental study carried out with R-134a during flow boiling in a horizontal tube of 2.6 mm ID. The experimental tests included (i) heat fluxes in the range from 10 to 100 kW/m2, (ii) the refrigerant mass velocities set to the discrete values in the range of 240-930 kg/(m2 s) and (iii) saturation temperature of 12 and 22 °C. The study analyzed the heat transfer, through the local heat transfer coefficient along of flow, and pressure drop, under the variation of these different parameters. It was possible to observe the significant influence of heat flux in the heat transfer coefficient and mass velocity in the pressure drop, besides the effects of saturation temperature. In the low quality region, it was possible to observe a significant influence of heat flux on the heat transfer coefficient. In the high vapor quality region, for high mass velocities, this influence tended to vanish, and the coefficient decreased. The influence of mass velocity in the heat transfer coefficient was detected in most tests for a threshold value of vapor quality, which was higher as the heat flux increased. For higher heat flux the heat transfer coefficient was nearly independent of mass velocity. The frictional pressure drop increased with the increase in vapor quality and mass velocity. Predictive models for heat transfer coefficient in mini channels were evaluated and the calculated coefficient agreed well with measured data within a range 35% for saturation temperature of 22 °C. These results extend the ranges of heat fluxes and mass velocities beyond values available in literature, and add a substantial contribution to the comprehension of boiling heat transfer phenomena inside mini channels.  相似文献   

17.
The effect of upward (+5°, +10°) and downward (−5°) pipe inclinations on the flow patterns, hold up and pressure gradient during two-liquid phase flows was investigated experimentally for mixture velocities between 0.7 and 2.5 m/s and phase fractions between 10% and 90%. The investigations were performed in a 38 mm ID stainless steel test pipe with water and oil as test fluids. High-speed video recording and local impedance and conductivity probes were used to precisely identify the different flow patterns. In both positive and negative inclinations the dispersed oil-in-water regime extended to lower mixture velocities and higher oil fractions compared to horizontal flow. A new flow pattern, oil plug flow, appeared at both +5° and +10° inclination while the stratified wavy pattern disappeared at −5° inclination. The oil to water velocity ratio was higher for the upward than for the downward flows but in the majority of cases and all inclinations oil was flowing faster than water. At low mixture velocities the velocity ratio increased with oil fraction while it decreased at high velocities. The increase became more significant as the degree of inclination increased. The frictional pressure gradient in both upward and downward flows was in general lower than in horizontal flows while a minimum occurred at all inclinations at high mixture velocities during the transition from dispersed water-in-oil to dual continuous flow.  相似文献   

18.
Artificial roughness in the form of ribs is a convenient method for enhancing thermal performance of solar air heaters. This paper presents the experimental investigation of heat transfer and friction factor characteristics of a rectangular duct roughened with W-shaped ribs arranged at an inclination with respect to the flow direction on its underside on one broad wall. W ribs have been tested both pointing in downstream W-down and upstream W-up to the flow. The range of parameters for this study has been decided on the basis of practical considerations of the system and operating conditions. The duct has a width to height ratio (W/H) of 8.0, relative roughness pitch (p/e) of 10, relative roughness height (e/Dh) of 0.03375 and angle of attack of flow (α) of 30-75°. The air flow rate corresponds to Reynolds number between 2300-14,000. The heat transfer and friction factor results have been compared with those for smooth duct under similar flow and thermal boundary condition and thermo-hydraulic performance has been investigated. Thermo-hydraulic performance comparison for different angle of attack of flow shows that W-down arrangement with angle of attack of flow as 60° gives best thermo-hydraulic performance. In addition heat transfer and friction factor correlations have been developed.  相似文献   

19.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

20.
The aim of the present work is to study the entropy generation in the natural convection process in square cavities with hot wavy walls through numerical simulations for different undulations and Rayleigh numbers, while keeping the Prandtl number constant. The results show that the hot wall geometry affects notably the heat transfer rate in the cavity. It has been found in the present numerical study that the mean Nusselt number in the case of heat transfer in a cavity with wavy walls is lower, as compared to heat transfer in a cavity without undulations. Based on the obtained dimensionless velocity and temperature values, the distributions of the local entropy generation due to heat transfer and fluid friction, the local Bejan number, and the local entropy generation are determined and plotted for different undulations and Rayleigh numbers. The study is performed for Rayleigh numbers 103 < Ra < 105, irreversibility coefficients 10?4 < φ < 10?2, and Prandtl numbers Pr = 0.71. The total entropy generation is found to increase with increasing undulation number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号